Техническая механика. Техническая механика Как найти кпд зная массу и силу

В электрической или электронной схеме есть два типа элементов: пассивные и активные. Активный элемент способен непрерывно подавать энергию в цепь – аккумулятор, генератор. Пассивные элементы – резисторы, конденсаторы, катушки индуктивности, только потребляют энергию.

Что такое источник тока

Источник тока – это устройство, непрерывно питающее цепь электроэнергией. Он может быть источником постоянного тока и переменного. Аккумуляторные батареи – это источники постоянного тока, а электророзетка – переменного.

Одна из интереснейших характеристик питающих источников они способны преобразовывать неэлектрическую энергию в электрическую, например:

  • химическую в батареях;
  • механическую в генераторах;
  • солнечную и т. д.

Электрические источники делятся на:

  1. Независимые;
  2. Зависимые (контролируемые), выход которых зависит от напряжения или тока в другом месте схемы, который может быть либо постоянным, либо меняющимся во времени. Используются в качестве эквивалентных ИП для электронных устройств.

Когда говорят о законах цепи и анализе, электрические ИП часто рассматриваются как идеальные, то есть теоретически способные обеспечить бесконечное количество энергии без потерь, имея при этом характеристики, представленные прямой линией. Однако в реальных, или практических, источниках всегда есть внутреннее сопротивление, влияющее на их выход.

Важно! ИП могут быть соединены параллельно, только если имеют одинаковое значение напряжения. Последовательное соединение будет влиять на выходной показатель напряжения.

Внутреннее сопротивление ИП представляется как последовательно соединенное со схемой.

Мощность источника тока и внутреннее сопротивление

Пусть рассматривается простая схема, в которой аккумулятор имеет ЭДС Е и внутреннее сопротивление r и подает ток I на внешний резистор сопротивлением R. Внешний резистор может быть любой активной нагрузкой. Основной целью схемы является передача энергии от батареи к нагрузке, где она делает что-то полезное, например, идет на освещение помещения.

Можно вывести зависимость полезной мощности от сопротивления:

  1. Эквивалентное сопротивление схемы – R + r (так как сопротивление нагрузки включено последовательно с внешней нагрузкой);
  2. Ток, протекающий в цепи, будет определяться выражением:
  1. Выходная мощность ЭДС:

Рвых. = E x I = E²/(R + r);

  1. Мощность, рассеиваемая как тепло, при внутреннем сопротивлении батареи:

Pr = I² x r = E² x r/(R + r)²;

  1. Мощность, передаваемая нагрузке:

P(R) = I² x R = E² x R/(R + r)²;

  1. Рвых. = Рr + P(R).

Таким образом, часть выходной энергии батареи сразу теряется из-за рассеивания тепла на внутреннем сопротивлении.

Теперь можно построить график зависимости P(R) от R и выяснить, при какой нагрузке полезная мощность примет максимальное значение. При анализе функции на экстремум выясняется, что при увеличении R будет монотонно возрастать и P(R) до того пункта, когда R не сравняется с r. В этой точке полезная мощность будет максимальной, а затем начинает монотонно уменьшаться при дальнейшем увеличении R.

P(R)max = E²/4r, когда R = r. При этом I = E/2r.

Важно! Это очень значимый результат в электротехнике. Передача энергии между источником питания и внешней нагрузкой наиболее эффективна, когда сопротивление нагрузки соответствует внутреннему сопротивлению источника тока.

Если сопротивление нагрузки слишком велико, то ток, протекающий по цепи мал, чтобы передавать энергию на нагрузку с заметной скоростью. Если сопротивление нагрузки слишком низкое, то большая часть выходной энергии рассеивается как тепло внутри самого ИП.

Это условие получило название согласования. Одним из примеров соответствия сопротивления источника и внешней нагрузки является звуковой усилитель и громкоговоритель. Выходной импеданс Zout усилителя задается от 4 до 8 Ом, а номинальный входной импеданс динамика Zin только 8 Ом. Затем, если громкоговоритель 8 Ом будет подключен к выходу усилителя, он будет видеть динамик в качестве нагрузки 8 Ом. Подключение двух громкоговорителей на 8 Ом параллельно друг другу эквивалентно усилителю, работающему на одном громкоговорителе 4 Ом, и обе конфигурации находятся в пределах выходных характеристик усилителя.

КПД источника тока

При совершении работы электрическим током происходят преобразования энергии. Полная работа, совершаемая источником, идет на энергопреобразования во всем электрическом контуре, а полезная – только в присоединенной к ИП цепи.

Количественная оценка КПД источника тока производится по самому значимому показателю, определяющему скорость совершения работы, мощности:

Далеко не вся выходная мощность ИП используется энергопотребителем. Соотношение потребленной энергии и выданной источником представляет собой формулу коэффициента полезного действия:

η = полезная мощность/выходная мощность = Pпол./Рвых.

Важно! Так как Pпол. практически в любом случае меньше, чем Рвых, η не может быть больше 1.

Эту формулу можно преобразовать, подставляя выражения для мощностей:

  1. Выходная мощность источника:

Рвых. = I x E = I² x (R + r) x t;

  1. Потребленная энергия:

Рпол. = I x U = I² x R x t;

  1. Коэффициент:

η = Рпол./Рвых. = (I² x R x t)/(I² x (R + r) x t) = R/(R + r).

То есть у источника тока КПД определяется соотношением сопротивлений: внутреннего и нагрузочного.

Часто показателем КПД оперируют в процентах. Тогда формула примет вид:

η = R/(R + r) x 100%.

Из полученного выражения видно, что при соблюдении условия согласования (R = r) коэффициент η = (R/2 x R) х 100% = 50%. Когда передаваемая энергия наиболее эффективна, КПД самого ИП оказывается равным всего 50%.

Пользуясь этим коэффициентом, оценивают эффективность различных ИП и потребителей электроэнергии.

Примеры значений КПД:

  • газовая турбина – 40%;
  • солнечная батарея – 15-20%;
  • литий-ионный аккумулятор – 89-90%;
  • электронагреватель – приближается к 100%;
  • лампа накаливания – 5-10%;
  • светодиодная лампа – 5-50%;
  • холодильные установки – 20-50%.

Показатели полезной мощности рассчитываются для разных потребителей в зависимости от вида совершаемой работы.

Видео

Работа А – скалярная физическая величина, измеряемая произведением модуля силы, действующей на тело, на модуль его перемещения под действием этой силы и на косинус угла между векторами силы и перемещения:

Модуль перемещения тела, под действием силы ,

Работа, которую совершила сила

На графиках в осях F-S (рис.1) работа силы численно равна площади фигуры, ограниченной графиком, осью перемещения и прямыми, параллельными оси силы.

Если на тело действует несколько сил, то в формуле работы F – это не равнодействующая ma всех этих сил, а именно та сила, которая и совершает работу. Если локомотив тянет вагоны, то этой силой является сила тяги локомотива, если на канате поднимают тело, то этой силой является сила натяжения каната. Это может быть и сила тяжести и сила трения, если в условии задачи речь идет о работе именно этих сил.

Пример 1. Тело мас­сой 2 кг под дей­стви­ем силы F пе­ре­ме­ща­ет­ся вверх по на­клон­ной плос­ко­сти на рас­сто­я­ние Рас­сто­я­ние тела от по­верх­но­сти Земли при этом уве­ли­чи­ва­ет­ся на .

Век­тор силы F на­прав­лен па­рал­лель­но на­клон­ной плос­ко­сти, мо­дуль силы F равен 30 Н. Какую ра­бо­ту при этом пе­ре­ме­ще­нии в си­сте­ме от­сче­та, свя­зан­ной с на­клон­ной плос­ко­стью, со­вер­ши­ла сила F ? Уско­ре­ние сво­бод­но­го па­де­ния при­ми­те рав­ным , ко­эф­фи­ци­ент тре­ния

Решение: Ра­бо­та силы опре­де­ля­ет­ся как ска­ляр­ное про­из­ве­де­ние век­то­ра силы и век­то­ра пе­ре­ме­ще­ния тела. Сле­до­ва­тель­но, сила F при подъ­еме тела вверх по на­клон­ной плос­ко­сти со­вер­ши­ла ра­бо­ту.

Если в условии задачи идет речь о коэффициенте полезного действия (КПД) какого либо механизма, надо подумать какая работа, совершаемая им полезная, а какая затраченная.

Коэффициентом полезного действия механизма (КПД) η называют отношение полезной работы, совершенной механизмом, ко всей затраченной при этом работе.

Полезная работа – это та, которую нужно сделать, а затраченная – та, что приходится делать на самом деле.



Пример 2. Пусть тело массой m требуется поднять на высоту h , перемещая его при этом по наклонной плоскости длиной l под действием силы тяги F тяги . В этом случае полезная работа равна произведению силы тяжести на высоту подъема:

А затраченная работа будет равна произведению силы тяги на длину наклонной плоскости:

Значит, КПД наклонной плоскости равен:

Замечание : КПД любого механизма не может быть больше 100 % - зоолотое правило механики.

Мощность N (Вт.) – это количественная мера быстроты совершения работы. Мощность равна отношению работы ко времени за которое она совершена:

Мощность – скалярная величина.

Если тело движется равномерно, то получаем:

Где – скорость равномерного движения.

Как известно, на данный момент еще не созданы такие механизмы, которые бы до конца превращали один вид энергии в другой. В процессе работы любой рукотворный прибор расходует часть энергии на сопротивление сил либо же впустую ее рассеивает в окружающую среду. То же самое происходит и в замкнутой электроцепи. Когда заряды протекают по проводникам, осуществляется сопротивление полной и полезной нагрузки работы электричества. Чтобы сопоставить их соотношения, потребуется произвести коэффициент полезного действия (КПД).

Для чего нужен расчет КПД

Коэффициент полезного действия электрической цепи – это отношение полезного тепла к полному.

Для ясности приведем пример. При нахождении КПД двигателя можно определить, оправдывает ли его основная функция работы затраты потребляемого электричества. То есть его расчет даст ясную картину, насколько хорошо устройство преобразовывает получаемую энергию.

Обратите внимание! Как правило, коэффициент полезного действия не имеет величины, а представляет собой процентное соотношение либо числовой эквивалент от 0 до 1.

КПД находят по общей формуле вычисления, для всех устройств в целом. Но чтобы получить его результат в электрической цепи, вначале потребуется найти силу электричества.

Нахождения тока в полной цепи

По физике известно, что любой генератор тока имеет свое сопротивление, которое еще принято называть внутренняя мощность. Помимо этого значения, источник электричества также имеет свою силу.

Дадим значения каждому элементу цепи:

  • сопротивление – r;
  • сила тока – Е;

Итак, чтобы найти силу тока, обозначение которого будет – I, и напряжение на резисторе – U, потребуется время – t, с прохождением заряда q = lt.

В связи с тем, что сила электричества постоянна, работа генератора целиком преобразуется в тепло, выделяемое на R и r. Такое количество можно рассчитать по закону Джоуля-Ленца:

Q = I2 + I2 rt = I2 (R + r) t.

Затем приравниваются правые части формулы:

EIt = I2 (R + r) t.

Осуществив сокращение, получается расчет:

Произведя у формулы перестановку, в итоге получается:

Данное итоговое значение будет являться электрической силой в данном устройстве.

Произведя таким образом предварительный расчет, теперь можно определить КПД.

Расчет КПД электрической цепи

Мощность, получаемая от источника тока, называется потребляемой, определение ее записывается – P1. Если эта физическая величина переходит от генератора в полную цепь, она считается полезной и записывается – Р2.

Чтобы определить КПД цепи, необходимо вспомнить закон сохранения энергии. В соответствии с ним, мощность приемника Р2 будет всегда меньше потребляемой мощности Р1. Это объясняется тем, что в процессе работы в приемнике всегда происходит неизбежная пустая трата преобразуемой энергии, которая расходуется на нагревание проводов, их оболочки, вихревых токов и т.д.

Чтобы найти оценку свойств превращения энергии, необходим КПД, который будет равен отношению мощностей Р2 и Р1.

Итак, зная все значения показателей, составляющих электроцепи, находим ее полезную и полную работу:

  • А полезная. = qU = IUt =I2Rt;
  • А полная = qE = IEt = I2(R+r)t.

В соответствии этих значений, найдем мощности источника тока:

  • Р2 = А полезная /t = IU = I2 R;
  • P1 = А полная /t = IE = I2 (R + r).

Произведя все действия, получаем формулу КПД:

n = А полезная / А полная = Р2 / P1 =U / E = R / (R +r).

У этой формулы получается, что R выше бесконечности, а n выше 1, но при всем этом ток в цепи остается в низком положении, и его полезная мощность мала.

Каждый желает найти КПД повышенного значения. Для этого необходимо найти условия, при которых P2 будет максимален. Оптимальные значения будут:

  • P2 = I2 R = (E / R + r)2 R;
  • dP2 / dR = (E2 (R + r)2 — 2 (r + R) E2 R) / (R + r)4 = 0;
  • E2 ((R + r) -2R) = 0.

В данном выражении Е и (R + r) не равны 0, следовательно, ему равно выражение в скобках, то есть (r = R). Тогда получается, что мощность имеет максимальное значение, а коэффициент полезного действия = 50 %.

Как видно, найти коэффициент полезного действия электрической цепи можно самостоятельно, не прибегая к услугам специалиста. Главное –соблюдать последовательность в расчетах и не выходить за рамки приведенных формул.

Видео

На практике важно знать, как быстро машина или механизм совершают работу.

Быстрота совершения работы характеризуется мощностью.

Cредняя мощность численно равна отношению работы к промежутку времени, за который совершается работа.

= DA/Dt. (6)

Если Dt ® 0, то, перейдя к пределу, получим мгновенную мощность:

. (8)

, (9)

N = Fvcos.

В СИ мощность измеряется в ваттах (Bт).

На практике важно знать производительность механизмов и машин или другой промышленной и сельскохозяйственной техники.

Для этого используют коэффициент полезного действия (КПД) .

Коэффициентом полезного действия называют отношение полезной работы ко всей затраченной.

. (10)

.

1.5. Кинетическая энергия

Энергию, которой обладают движущиеся тела, называют кинетической энергией (W k).

Найдем полную работу силы при перемещении м. т. (тела) на участке пути 1– 2. Под действием силы м. т. может изменять свою скорость, например, увеличивает (уменьшает) от v 1 до v 2 .

Уравнение движения м. Т. Запишем в виде

Полная работа
или
.

После интегрирования
,

где
называют кинетической энергией. (11)

Cледовательно,

. (12)

Вывод: Работа силы при перемещении материальной точки равна изменению ее кинетической энергии .

Полученный результат можно обобщить на случай произвольной системы м. т.:
.

Следовательно, суммарная кинетическая энергия – величина аддитивная. Широкое применение имеет другая форма записи формулы кинетической энергии:
. (13)

Замечание: кинетическая энергия – функция состояния системы, зависит от выбора системы отсчета и является величиной относительной.

В формуле А 12 = W k под А 12 надо понимать работу всех внешних и внутренних сил. Но сумма всех внутренних сил равна нулю (на основании третьего закона Ньютона) и суммарный импульс равен нулю.

Но не так обстоит дело в случае кинетической энергии изолированной системы м. т. или тел. Оказывается, что работа всех внутренних сил не равна нулю.

Достаточно привести простой пример (рис. 6).

Как видно из рис. 6, работа силы f 12 по перемещению м. т. массой m 1 положительна

A 12 = (– f 12) (– r 12) > 0

и работа силы f 21 по перемещению м.т. (тела) массой m 2 также положительна:

A 21 = (+ f 21) (+ r 21) > 0.

Следовательно, полная работа внутренних сил изолированной системы м. т. не равна нулю:

А = А 12 + А 21  0.

Таким образом, суммарная работа всех внутренних и внешних сил идет на изменение кинетической энергии.

Коэффициент полезного действия это характеристика эффективности работы, какого либо устройства или машины. КПД определяется как отношение полезной энергии на выходе системы к общему числу энергии подведенной к системе. КПД величина безразмерная и зачастую определяется в процентах.

Формула 1 — коэффициент полезного действия

Где—A полезная работа

Q суммарная работа, которая была затрачена

Любая система, совершающая какую либо работу, должна из вне получать энергию, с помощью которой и будет совершаться работа. Возьмем, к примеру, трансформатор напряжения. На вход подается сетевое напряжение 220 вольт, с выхода снимается 12 вольт для питания, к примеру, лампы накаливания. Так вот трансформатор преобразует энергию на входе до необходимого значения, при котором будет работать лампа.

Но не вся энергия, взятая от сети, попадет к лампе, поскольку в трансформаторе существуют потери. Например, потери магнитной энергии в сердечнике трансформатора. Или потери в активном сопротивлении обмоток. Где электрическая энергия будет переходить в тепловую не доходя до потребителя. Эта тепловая энергия в данной системе является бесполезной.

Поскольку потерь мощности избежать невозможно в любом системе то коэффициент полезного действия всегда ниже единицы.

КПД можно рассматривать как для всей системы целиком, состоящей из множество отдельных частей. Так и определять КПД для каждой части в отдельности тогда суммарный КПД будет равен произведению коэффициентов полезного действия всех его элементов.

В заключение можно сказать, что КПД определяет уровень совершенства, какого либо устройства в смысле передачи или преобразования энергии. Также говорит о том, сколько энергии подводимой к системе расходуется на полезную работу.

Степень окисления