Органоиды входящие в состав клетки. Органоиды клетки и их функции

Любой человек знает ещё со школы, что все живые организмы, как растения, так и животные, состоят из клеток. Но вот из чего состоят они сами — это известно отнюдь не каждому, а если всё-таки и известно, то не всегда хорошо. В данной статье мы рассмотрим строение растительных и животных клеток, разберёмся в их отличиях и сходствах.

Но сначала давайте разберёмся, что же вообще такое органоид.

Вконтакте

Органоид — это орган клетки, осуществляющий какую-либо свою, индивидуальную функцию в ней, обеспечивая при этом её жизнеспособность, ведь без исключения каждый процесс, происходящий в системе, очень для этой системы важен. А все органоиды составляют систему . Органоиды ещё называют органеллами.

Растительные органеллы

Итак, рассмотрим, какие же органоиды имеются в растениях и какие именно функции они выполняют.

Ядро (ядерный аппарат) — один из самых важных органоидов. Оно отвечает за передачу наследственной информации — ДНК (дезоксирибонуклеиновую кислоту). Ядро — органелла округлой формы. У него есть подобие скелета — ядерный матрикс. Именно матрикс отвечает за морфологию ядра , его форму и размеры. Внутри ядра содержится ядерный сок, или кариоплазма. Она представляет собой достаточно вязкую, густую жидкость, в которой находятся маленькое ядрышко, формирующее белки и ДНК, а также хроматин, который реализует накопленный генетический материал.

Сам ядерный аппарат вместе с другими органоидами находится в цитоплазме — жидкой среде. Цитоплазма состоит из белков, углеводов, нуклеиновых кислот и прочих веществ, являющихся результатами производства других органоидов. Главная функция цитоплазмы — передача веществ между органоидами для поддержания жизни. Так как цитоплазма — это жидкость, то внутри клетки происходит незначительное движение органелл.

Мембранная оболочка

Мембранная оболочка, или плазмалемма, выполняет защитную функцию, оберегая органеллы от каких-либо повреждений. Мембранная оболочка представляет собой плёнку . Она не сплошная — оболочка имеет поры, через которые одни вещества входят в цитоплазму, а другие выходят. Складки и выросты мембраны обеспечивают прочное соединение клеток между собой. Защищена оболочка клеточной стенкой, это наружный скелет, придающий клетке особую форму.

Вакуоли

Вакуоли — это специальные резервуары для хранения клеточного сока. Он содержит в себе питательные вещества и продукты жизнедеятельности. Вакуоли накапливают его в процессе всей жизни клетки, подобные запасы необходимы в случае повреждений (редко) или же нехватки питательных веществ.

Аппарат, лизосомы и митохондрии

Хлоропласты, лейкопласты и хромопласты

Пластиды — двумембранные органоиды клетки , делящиеся на три вида — хлоропласты, лейкопласты и хромопласты:

  • Хлоропласты придают растениям зелёный цвет, они имеют округлую форму и содержат особое вещество — пигмент хлорофилл, участвующий в процессе фотосинтеза .
  • Лейкопласты — органеллы прозрачного цвета, отвечающие за переработку глюкозы в крахмал.
  • Хромопластами называют пластиды красного, оранжевого или жёлтого цвета. Они могут развиваться из хлоропластов, когда те теряют хлорофилл и крахмал. Мы можем наблюдать этот процесс, когда желтеют листья или созревают плоды. Хромопласты могут превратиться обратно в хлоропласты при определённых условиях.

Эндоплазматическая сеть

Эндоплазматическая сеть состоит из рибосом и полирибосом. Рибосомы синтезируются в ядрышке, они выполняют функцию биосинтеза белка. Рибосомные комплексы состоят из двух частей — большой и малой. Количество рибосом в пространстве цитоплазмы преобладающее .

Полирибосома — это множество рибосом, транслирующих одну большую молекулу вещества.

Органоиды животной клетки

Некоторые из органелл полностью совпадают с органоидами растительной, а некоторых растительных вообще нет в животных. Ниже приведена таблица сравнения особенностей строения.

Разберёмся с последними двумя:

Можно сказать, что строение животной и растительной клеток различно потому, что растения и животные имеют различные формы жизни. Так, органоиды растительной клетки лучше защищены, потому что растения недвижимы — они не могут убежать от опасности. Пластиды имеются в растительной клетке, обеспечивая растению ещё один вид питания — фотосинтез. Животным же в силу их особенностей питание посредством переработки солнечного света совершенно ни к чему. А потому и ни одного из трёх видов пластидов в животной клетке быть не может.

1) Основные органоиды растительной клетки классификация и функции.

Название органоида

Строение

Функции

Мембрана

Состоит из клетчатки. Она очень упругая (это ее физическое св-во). Состоит из 3-х слоев: внутренний и внешний из которых состоят из молекул белка; средний - из двухслойной молекулы фосфолипидов (гидрофильные снаружи, гидрофобные внутри). Внешняя оболочка – мягкая.

Опорная функция

Пассивный и активный обмен в-в; защитная; транспорт в-в из клетки в клетку

Плазмалемма

Очень тонкая. Внешняя сторона образована из углеводов, внутренняя – из толстой белковой молекулы. Химическую основу мембраны составляют: белки - 60%, жиры - 40% и углеводы - 2-10%.

*Проницаемость;

*Транспортная ф-я;

*Защитная ф-я.

Цитоплазма

Полужидкое вещество, окружающее ядро-клетки. Основа - гиоплазма. В ее составе содержатся гранулированные тела, белки, ферменты, нуклеиновые кислоты, углеводы, молекулы АТФ.

Может переходить из 1 состояния (жидкого) в другое - твердое и наоборот.

МЕМБРАННЫЕ ОРГАНОИДЫ

ЭПС (эндоплазматическая сеть)

Состоит из полостей и копальцев. Делится на 2 вида - гранулярную и гладкую. Гранулярная - продолговатые копальца и полости; имеются плотные гранулы (рибосомы).

*Уч-ет в синтезе молекул гликолипидов и их транспортировке;

*Уч-ет в биосинтезе белка, транспортировке синтезирующих веществ.

Комплекс Гольджи

Встречается в виде сети, соединенной между собой системой полостей. Похожи на цистерны.. Бывает овальной или сердцевидной.

*Уч-ет в формировании продуктов жизнедеятельности клетки;

*Распадается до диктиосомы (при делении);

*Выделительная функция.

Лизосома

Означает растворитель вещ-в. В составе содержатся ферменты гидролиза. Лизосома окружена липопротеидной мембраной, при ее разрушении ферменты лизосом воздействуют на внешнюю среду.

*Ф-я всасывания;

*Ф-я выделения;

*Функция защитная.

Митохондрия

В клетке имеет форму зерна, гранулы и встречается в кол-ве от 1 до 100 тысяч. Она относится к двумембранным органоидам и сост. из: а) наружной мембраны, б) внутренней мембраны, в) межмембранного пространства. В матриксе митохондрии встречаются кольцевидные ДНК и РНК, рибосомы, гранулы, тельца. Синтезируются белки и жиры. Мит-рия состоит на 65-70% из белка, 25-30% из липидов, нуклеиновых кислот и витаминов. Митохондрия - это система синтеза белка.

*Ф-ю мит-рии иногда выполняют хлоропласты;

*Транспортная ф-я;

*Синтез белка;

*Синтез АТФ.

Пластиды - мембранные органоиды

Это основной органоид растит. клетки.

1) хлоропласты - зеленые, по форме овальные, Внутри много мембранных тилакоидов и составляющих его массу белков стром. Имеются нуклеиновые кислоты - ДНК, РНК, рибосомы. Размножаются делением.

2) хромопласты - разного цвета. В них находятся различные пигменты.

3) лейкопласты - бесцветные. Находятся в тканях половых клеток, цитоплазмах спор и материнских гамет, семенах, плодах, корнях. В них идет синтез и накопление крахмала.

*Выполняют процесс фотосинтеза

*Привлекают внимание насекомых

*Запасают питательные в-ва

НЕМЕМБРАННЫЕ ОРГАНОИДЫ

Рибосома

Сост. из двух субъедениц: большая и малая. Имеет яйцеобразную форму. Между субъедениц проходит синтезируемая полипептидная цепь.

*Тут происходит биосинтез белка;

*Синтез молекулы белка;

*Транспортная ф-я.

Клеточный центр

Сост. из 2-х центриолей. Центр делится пополам перед делением клетки и подтягивается от экватора к полюсам. Кл. центр удваивается путем деления.

*Уч-ет в мейозе и митозе

Клеточное ядро

Имеет сложное строение. Ядерная оболочка сост. из 2-х трехслойных мембран. В период клетки мембрана ядра исчезает и вновь образуется в новых клетках. Мембранам св-нна полупроницаемость. Ядро сост. из хромосом, сока ядра, ядрышка, РНК и др. частей, сохраняющих наследственную инф-ию и св-ва живого организма.

*Защитная ф-я

2) Классификация листьев:

  • простые – одна листовая пластинка;
  • сложные – несколько листовых пластинок, имеющих свой черешочек, сидящий на общей оси – рахисе .

Сложные листья: А – непарноперистосложный; Б – парноперистосложный; В – тройчатосложный; Г – пальчатосложный; Д – дважды парноперистосложный; Е – дважды непарноперистосложный;

Типы расчленения пластинки:

Классификация простых листьев. Обобщенная схема форм листьев:

Основные типы верхушек, оснований и края листовых пластинок : А – верхушки: 1 – острая; 2 – заостренная; 3 – тупая; 4 – округлая; 5 – усеченная; 6 - выемчатая; 7 – остроконечная; Б – основания: 1 – узкоклиновидное; 2 – клиновидное; 3 – ширококлиновидное; 4 – низбегающее; 5 – усеченное; 6 – округлое; 7 – выемчатое; 8 – сердцевидное; В – край листа: 1 – пильчатый; 2 – двоякопильчатый; 3 - зубчатый; 4 – городчатый; 5 – выемчатый; 6 – цельный.

Основные типы жилкования листьев покрытосеменных растений : 1 – перистокраевое; 2 – перистопетлевидное; 3 – перистосетчатое; 4 – пальчатокраевое; 5 – пальчатопетлевидное; 6 – параллельное; 7 – пальчатосетчатое; 8 – дуговидное.

Способы прикрепления листья к стеблю:
Длинночерешковый, сидячий, влагалищный, пронзенный, короткочерешковый, низгибающие.

3) Розоцветные. Формы: деревья, кустарники, травы. Кс – стержневая, многие травянистые имеют корневище. Стебель – прямостоячий, у некоторых укороченные с усами, у других имеются колючки. Лист: простой и сложные с прилистниками

Формула: правильный, обоеполый

Обоеполый Ca 5 Co 5 A ∞ G 1-∞ (околоцветник над завязью).

Соцветие щиток, кисть, одиночные, зонтик

Плод костянка, орешек, ягода

Подсемейства: спирейные (спирея, рябинник, волжанка), шиповниковые (шиповник, малина, ежевика, хлопчатник, земляника,клубника), яблоневые (яблоня, груша, рябина, айва, боярышник), сливовые (вишня, слива,абрикос,персик,черемуха, миндаль)

Значение: пищевое,лек(щиповн),дек(роза,спирея)

Изучая строение растительной клетки, рисунок с подписями станет полезным визуальным конспектом для усвоения этой темы. Но сначала немного истории.

Историю открытия и изучения клетки связывают с именем английского изобретателя Роберта Гука. В 17 веке, на срезе растительной пробки, рассматриваемой под микроскопом, Р. Гук обнаружил ячейки, которые и были в дальнейшем названы клетками.

Основные сведения о клетке были представлены позже немецким ученым Т. Шванном в клеточной теории, сформулированной в 1838 году. Основные положения этого трактата гласят:

  • все живое на земле состоит из структурных единиц - клеток;
  • по строению и функциям все клетки имеют общие черты. Эти элементарные частицы способны к размножению, которое возможно благодаря делению материнской клетки;
  • в многоклеточных организмах клетки способны объединяться на основании общих функций и структурно-химической организации в ткани.

Клетка растения

Растительная клетка, наряду с общими признаками и схожестью в строении с животной, имеет и свои отличительные особенности, присущие только ей:

  • наличие клеточной стенки (оболочки);
  • наличие пластид;
  • наличие вакуоли.

Строение растительной клетки

На рисунке схематично показана модель растительной клетки, из чего она состоит, как называются основные её части.

Ниже будет подробно рассказано о каждой из них.

Органоиды клетки и их функции — описательная таблица

В таблице собрана важная информация об органоидах клетки. Она поможет школьнику составить план рассказа по рисунку.

Органоид Описание Функция Особенности
Клеточная стенка Покрывает цитоплазматическую мембрану, состав – в основном целлюлоза. Поддержание прочности, механическая защита, создание формы клетки, поглощение и обмен различных ионов, транспорт веществ. Характерна для растительных клеток (отсутствует в животной клетке).
Цитоплазма Внутренняя среда клетки. Включает полужидкую среду, расположенные в ней органоиды и нерастворимые включения. Объединение и взаимодействие всех структур (органоидов). Возможно изменение агрегатного состояния.
Ядро Самый крупный органоид. Форма шаровидная или яйцевидная. В нем расположены хроматиды (молекулы ДНК). Ядро покрыто двумембранной ядерной оболочкой. Хранение и передача наследственной информации. Двумембранный органоид.
Ядрышко Сферическая форма, d – 1-3 мкм. Являются основными носителями РНК в ядре. В них синтезируются рРНК и субъединицы рибосом . Ядро содержит 1-2 ядрышка.
Вакуоль Резервуар с аминокислотами и минеральными солями. Регулировка осмотического давления, хранение запасных веществ, аутофагия (самопереваривание внутриклеточного мусора). Чем старше клетка, тем большее пространство в клетке занимает вакуоль.
Пластиды 3 вида: хлоропласты, хромопласты и лейкопласты. Обеспечивает автотрофный тип питания, синтез органических веществ из неорганических. Иногда могут переходить из одного вида пластид в другой.
Ядерная оболочка Содержит две мембраны. К внешней прикрепляются рибосомы, в некоторых местах происходит соединение с ЭПР. Пронизана порами (обмен между ядром и цитоплазмой). Разделяет цитоплазму от внутреннего содержимого ядра. Двумембранный органоид.

Цитоплазматические образования — органеллы клетки

Поговорим подробнее о составляющих растительной клетки.

Ядро

Ядро осуществляет хранение генетической информации и реализацию наследуемой информации. Местом хранения являются молекулы ДНК. При этом в ядре присутствуют репарационные ферменты, которые способны контролировать и ликвидировать самопроизвольное повреждение молекул ДНК.

Кроме этого, сами молекулы ДНК в ядре подвержены редупликации (удвоению). В этом случае клетки, образованные при делении исходной, получают одинаковый и в качественном и количественном соотношении объем генетической информации.

Эндоплазматическая сеть (ЭПС)

Выделяют два типа: шероховатый и гладкий. Первый тип синтезирует белки на экспорт и клеточные мембраны . Второй тип способен осуществлять детоксикацию вредных продуктов обмена.

Аппарат Гольджи

Открыт исследователем из Италии К. Гольджи в 1898 году. В клетках располагается вблизи ядра. Эти органоиды представляют собой мембранные структуры, укомплектованные вместе. Такую зону скопления называют диктиосомой.

Они принимают участие в накоплении продуктов, которые синтезируются в эндоплазматическом ретикулуме и являются источником клеточных лизосом.

Лизосомы

Не являются самостоятельными структурами. Они представляют собой результат деятельности эндоплазматического ретикулума и аппарата Гольджи. Их главное предназначение — участвовать в процессах расщепления внутри клетки.

В лизосомах насчитывается около четырех десятков ферментов, которые разрушают большинство органических соединений. При этом сама мембрана лизосом устойчива к действию таких ферментов.

Митохондрии

Двумембранные органеллы. В каждой клетке их число и размеры могут варьироваться. Они окружены двумя высокоспециализированными мембранами. Между ними расположено межмембранное пространство.

Внутренняя мембрана способна образовывать складки — кристы. Благодаря наличию крист, внутренняя мембрана превосходит в 5 раз площадь внешней мембраны.

Повышенная функциональная активность клетки обусловлена увеличенным числом митохондрий и большим количеством крист в них, тогда как в условиях гиподинамиии количество крист в митохондрии и число митохондрий резко и быстро изменяется.

Обе мембраны митохондрий отличаются по своим физиологическим свойствам. При повышенном или пониженном осмотическом давлении внутренняя мембрана способна сморщиваться или растягиваться. Для наружной мембраны характерно только необратимое растяжение, которое может привести к разрыву. Весь комплекс митохондрий, наполняющих клетку, называют хондрионом.

Пластиды

По своим размерам эти органоиды уступают только ядру. Существует три вида пластид:

  • отвечающие за зелёную окраску растений — хлоропласты;
  • ответственные за осенние цвета - оранжевый, красный, жёлтый, охра — хромопласты;
  • не влияющие на окрашивание, бесцветные лейкопласты.

Стоит отметить: установлено, что в клетках одновременно может быть только какой-то один из видов пластид.

Строение и функции хлоропластов

В них осуществляются процессы фотосинтеза . Присутствует хлорофилл (придает зеленую окраску). Форма – двояковыпуклая линза. Количество в клетке – 40-50. Имеет двойную мембрану. Внутренняя мембрана формирует плоские пузырьки – тилакоиды, которые упакованы в стопки – граны.

Хромопласты

За счет ярких пигментов придают органам растений яркие цвета: разноцветным лепесткам цветов, созревшим плодам, осенним листьям и некоторым корнеплодам (морковь).

Хромопласты не имеют внутренней мембранной системы. Пигменты могут накапливаться в кристаллическом виде, что придает пластидам разнообразные формы (пластина, ромб, треугольник).

Функции данного вида пластид пока до конца не изучены. Но по имеющейся информации, это устаревшие хлоропласты с разрушенным хлорофиллом.

Лейкопласты

Присущи тем частям растений, на которые солнечные лучи не попадают. Например, клубни, семена, луковицы, корни. Внутренняя система мембран развита слабее, чем у хлоропластов.

Ответственны за питание, накапливают питательные вещества, принимают участие в синтезе. При наличии света лейкопласты способны переродиться в хлоропласты.

Рибосомы

Мелкие гранулы, состоящие из РНК и белков. Единственные безмембранные структуры. Могут располагаться одиночно или в составе группы (полисомы).

Рибосому формируют большая и малая субъединица, соединенные ионами магния. Функция – синтез белка.

Микротрубочки

Это длинные цилиндры, в стенках которых расположен белок тубулин. Этот органоид – динамическая структура (может происходить его наращивание и распад). Принимают активное участие в процессе деления клеток.

Вакуоль - строение и функции

На рисунке обозначена голубым цветом. Состоит из мембраны (тонопласта) и внутренней среды (клеточного сока).

Занимает большую часть клетки, центральную её часть.

Запасает воду и питательные вещества, а также продукты распада.

Несмотря на единую структурную организацию в строении основных органоидов, в мире растений наблюдается огромное видовое разнообразие.

Любому школьнику, а тем более взрослому, нужно понимать и знать, какие обязательные части имеет растительная клетка и как выглядит её модель, какую роль они выполняют, и как называются органоиды, отвечающие за окраску частей растений.

Разбор с преподавателем узловых вопросов, необходимых для освоения темы занятия.

Контроль исходного уровня знаний и умений.

Органоиды общего назначения

Среди них можно выделить три группы:

1 - органоиды, участвующие в синтезе веществ;

2 - органоиды с защитной пищеварительной функцией;

3 - органоиды, обеспечивающие клетку энергией.

4 – органоиды, участвующие в делении и движении клеток.

В любой клетке совершается синтез свойственных ей веществ, являющихся либо строительным материалом для новообразующихся структур взамен изношенных, либо ферментами, участвующими в биохимических реакциях, либо секретами, выделяемыми из клеток желез.

Исходными продуктами для синтеза служат вещества, образующиеся при распаде клеточных структур, но, главным образом, поглощаемые клеткой извне. При этом те из них, которые представляют собой цельные молекулы белков, жиров и углеводов, предварительно адсорбированные на поверхности клетки и поступившие в цитоплазму, расщепляются с помощью ферментов на составные части. Активная роль в синтезе клеточных веществ принадлежит эндоплазматической сети и рибосомам.

Эндоплазматическая сеть (ЭПС)

Эндоплазматическая сеть (эндоплазматический ретикулум) впервые была обнаружена американским ученым Портером в 1945 г. при электронной микроскопии культур клеток соединительной ткани - фибробластов - и названа эндоплазматической сеть. Различают две разновидности ЭПС: гладкую (агранулярную) и шероховатую (гранулярную). Обе они образованы цистернами или каналами, которые ограничены мембраной, толщиной 6-7 нм. На наружной поверхности мембраны шероховатой ЭПС имеются рибонуклеопротеидные гранулы - рибосомы, отсутствующие на поверхности мембран гладкой сети. Оба типа ЭПС обычно находятся в непосредственной структурной взаимосвязи вследствие прямого перехода мембран ЭПС одного типа в мембраны ЭПС другого типа, а содержимое каналов и цистерн этих разновидностей ЭПС не разграничено специальными структурами. Тем не менее, обе разновидности ЭПС представляют собой дифференцированные специфические внутриклеточные органоиды, специализированные на реализацию разных функций.

Строение гладкой ЭПС. Она представлена канальцами диаметром 50-100 нм, которые на ультратонких срезах выглядят в виде парных мембран (трубочек) или мешочков. Мембраны гладкой цитоплазматической сети имеют много общего с остальными клеточными мембранами. В основе их строения лежит липопротеидный комплекс со значительным содержанием липидов (до 50%), Толщина каждой мембраны около 6-7 нм. Агранулярная ЭПС постоянно присутствует в клетках печени, клубочковой и пучковой зонах надпочечников, а также в сердечных миоцитах и мышечных волокнах скелетной мускулатуры. Агранулярная сеть, как правило, определяется в местах скопления гликогена или липидных включений.


Функцию ЭПС гладкого типа связывают, главным образом, с углеводным и жировым обменом. Считают, что она участвует в синтезе липидов и расщеплении гликогена, предохраняя при этом образующуюся глюкозу от действия гликолитических ферментов.

Наконец, все более очевидной становится значение гладкой эндоплазматической сети, как системы внутриклеточного проведения импульсов, в частности, в мышечных волокнах, где она лежит вдоль миофибрилл (белковые нити, способные к сокращению при раздражении). Гладкая ЭПС может транспортировать и накапливать вещества, осуществлять функцию детоксикации вредных продуктов обмена. В поперечно полосатой мышечной ткани гладкая ЭПС играет роль резервуара ионов кальция, а ее мембраны содержат мощные кальциевые насосы, которые в сотые доли секунды могут выбрасывать большие количества ионов в цитоплазму или, наоборот, транспортировать их в полость этих каналов. ЭПС в клетках надпочечников специализирована на синтез предшественников стероидных гормонов.

Строение ЭПС гранулярного типа. Состоит из разветвленной системы канальцев или плоских мешочков, ограниченных липопротеидными мембранами, на поверхности которых расположены рибосомы. Она обнаружена почти во всех клетках, но наиболее сильно развита в клетках с высоким уровнем белкового обмена, например, в клетках эндокринной системы, поджелудочной железы, печени, слюнных желез, нейронах центральной нервной системы и т. д. Так, в секреторных клетках, синтезирующих белки на экспорт, гранулярная ЭПС занимает основную часть цитоплазмы.

После гибели клеток гранулярная ЭПС разрушается значительно позже, чем агранулярная.

Функцию ЭПС гранулярного типа, прежде всего, связывают с обеспечением синтеза белка , внутриклеточного транспорта и начальной пострансляционной модификацией белков , синтезируемых на прикрепленных рибосомах. Доказано, что на поверхности гранулярной ЭПС осуществляется синтез ряда простых веществ белковой природы. Синтезируемые вещества способны поступать в пространство ЭПС и передвигаться внутри клетки. Установлено, что мембраны ЭПС могут переходить в наружную мембрану ядерной оболочки. Вследствие этого пространство ЭПС может сообщаться с перинуклеарным пространством, расположенным между наружной и внутренней мембранами оболочки ядра. Иногда гранулярная ЭПС может играть роль резервуара для хранения запасных питательных веществ.

Кроме того, важнейшей функцией мембраны ЭПС является ее способность ограничивать однородные участки цитоплазмы и вещества, в них содержащиеся. Такое явление называется компартментализацией цитоплазмы.

Биогенез ЭПС. Этот вопрос представляет большой интерес, поскольку ЭПС является динамической структурой, претерпевающей значительные изменения в связи с функциональными колебаниями, свойственными клеткам. Так, например, при голодании организма, когда снижается синтез белков и интенсивно расходуется гликоген печени, в ее клетках уменьшается масса гранулярной сети и резко возрастает объем агранулярной сети.

В настоящее время существует несколько точек зрения об источниках образования мембран ЭПС: 1 - образование мембран при участии ядерной оболочки; 2 - образование новых мембран в существующей гранулярной ЭПС, которые лишь вторично превращаются в систему гладкой ЭПС; 3 - образование мембран заново из имеющихся в цитоплазме белков и липидов.

Рибосомы

Рибосомы представляют собой рибонуклеопротеидные гранулы, в которых осуществляется синтез белков, свойственных данному организму. В цитоплазме клеток они лежат либо на поверхности мембраны гранулярной цитоплазматической сети (связанные рибосомы) , либо располагаются свободно в цитоплазме (свободные рибосомы) , либо входят в состав митохондрий (митохондриальные рибосомы). Одиночные цитоплазматические рибосомы имеют размеры около 10-25 нм, митохондриальные рибосомы более мелкие.

Строение рибосом. Исследования, проведенные с помощью электронного микроскопа, показали, что в состав рибосомы входят информационная РНК (иРНК), две рибосомные субъединицы (большая и малая) и транспортная РНК (тРНК). Каждая субъединица построена из рибосомный РНК (рРНК) и белка в соотношении 1:1. Формирование рибосом происходит в цитоплазме клетки следующим образом: к молекуле иРНК вначале присоединяется малая субъединица, затем тРНК, и в последнюю очередь большая субъединица. Формируется сложный комплекс из плотно прилегающих друг к другу макромолекул. Имеются также данные о наличии в рибосомах липидов, ионов и ферментов. Соединение отдельных рибосом с мембранами ЭПС осуществляется большими субъединицами.

В рибосомах осуществляется синтез различных белков : в свободных рибосомах - белков, необходимых самой клетке, в связанных с мембранами рибосомах - белков, идущих на «экспорт», т. е. выделяемых клеткой. Используя метод электронной микроскопии и введения меченых аминокислот удалось установить, что в рибосомах, связанных с мембранами, синтез белков происходит примерно в 20 раз быстрее, чем в свободных рибосомах. Полагают, что на рибосомах гранулярной ЭПС белки синтезируются за 2-3 мин, а через 10 мин они перемещаются в просвет канальцев эндоплазматической сети.

Во время интенсивного синтеза белков отдельные рибосомы объединяются с помощью информационной РНК, как бы нанизываясь на ее длинную молекулу, в небольшие группы, которые называются полисомами , или полирибосомами. Количество рибосом в полисоме может колебаться от 5-7 до 70-80 и более, что зависит от размера белковой молекулы.

Биогенез рибосом. Количество рибосом в цитоплазме подвержено значительным колебаниям, отражающим различные функциональные состояния клеток. Ключевая роль в образовании рибосом принадлежит ядрышку. Прямое доказательство того, что ядрышко ответственно за синтез рРНК, было получено в 1964 году, когда открыли, что в мутантных клетках, лишенных ядрышек, синтез рРНК не происходит. Синтез рРНК кодируется рибосомной ДНК, которая локализуется специфических участках хромосом - ядрышкообразующих районах (ЯОР). Рибосомальные белки (их насчитывается более 50 видов) синтезируются в цитоплазме, а затем транспортируются в ядрышки, где происходит их объединение с рРНК. Так в ядрышках образуются большие и малые субъединицы рибосом, которые в дальнейшем транспортируются из ядра в цитоплазму клетки.

Пластинчатый комплекс Гольджи

В 1898 г. итальянский ученый Гольджи, применив метод импрегнации азотнокислым серебром, обнаружил в нервных клетках спинномозгового узла структуры, состоящие из пластинок и пузырьков. Этo и есть пластинчатый комплекс, носивший долгое время имя Гольджи.

Серьезный вклад в понимание значения пластинчатого комплекса внес советский ученый цитолог Д.Н. Насонов (1930), установивший существенную роль этой органеллы в процессах секреции.

Строение пластинчатого комплекса. В основе строения пластинчатого комплекса, как и в основе строения большинства клеточных органелл, лежат липопротеидные мембраны, толщиной. Данные электронной микроскопии показали, что пластинчатый комплекс является неоднородным образованием. Центральной, наиболее типичной и постоянной структурой аппарата Гольджи является система уплощенных цистерн, составляющих стопку или колонку прилегающих друг к другу овальных или округлых образований (диктиосома). В периферической части цистерн (в типичных случаях) формируется вакуолярная часть комплекса Гольджи, состоящая из ограниченных мембраной пузырьков разных размеров.

В более сложных вариантах организации комплекса Гольджи на периферии цистерн развивается сложная система ограниченных мембранами трубчатых переплетающихся структур, от которых отшнуровываются периферические пузырьки и вакуоли.

По периферии аппарата Гольджи имеются скопления полирибосом. Показано, что они синтезируют ряд ферментов, специфических для мембран аппарата Гольджи. Характерна тесная пространственная связь комплекса Гольджи с мембранами ЭПС и ядерной оболочкой. Некоторые авторы обнаружили непосредственный переход канальцев гранулярной ЭПС в пластинчатый комплекс.

В живой клетке пластинчатый комплекс располагается около ядра. Форма пластинчатого комплекса варьирует в зависимости от функционального состояния клетки.

Функции пластинчатого комплекса длительное время сводили к участию в оформлении секреторных гранул , в секреции и транспорте . Комплекс Гольджи является упаковочным «цехом» в клетке, конденсационной мембраной, концентрируя в виде капель или гранул вещества, вырабатываемые клеткой. Однако в последнее время установлено, что он выполняет и ряд других функций; в нем происходит дегидратация (обезвоживание) белковых продуктов секреторных гранул, сегрегация (укрупнение) белковых молекул, синтез сложных комплексных соединений : гликопротеидов, гликолипидов, мукополисахаридов, зрелых молекул иммуноглобулинов и т.д.

Полагают, что пластинчатый комплекс дает начало мелким пузырькам , которые играют роль транспортных структур, связывающих пластинчатый комплекс с цитоплазматическим ретикулумом и клеточной оболочкой. Считают также, что он принимает участие в образовании первичных лизосом. Комплекс Гольджи участвует в формировании акросомы сперматозоида. Из цистерн аппарата Гольджи, так же как из ЭПС, могут возникать пероксисомы .

Биогенез пластинчатого комплекса . Согласно существующим предположениям пластинчатый комплекс может возникать различными путями: 1 - вследствие фрагментации (деления) его элементов, 2 - из мембран гранулярной ЭПС, 3 - из микропузырьков, образующихся на внешней поверхности ядерной оболочки, 4 - может образоваться de novo.

Микротрубочки

Впервые их наблюдали в аксоплазме, выдавленной из миелинизированных нервных волокон. Для цитоплазматических микротрубочек характерны постоянные размеры и удивительная прямолинейность. Их диаметр около 24 нм, длина несколько микрон. На поперечном срезе они имеют вид кольца. Эта конфигурация образуется плотной стенкой и светлым центральным участком.

Стенка микротрубочки состоит из отдельных линейных или спиральных нитчатых структур диаметром около 5 нм, которые, в свою очередь состоят из белковых субъединиц. На поперечном срезе микротрубочки насчитывается около 13 субъединиц. Иногда в центральной части некоторых микротрубочек обнаруживаются плотные тяжи или палочки.

Функции микротрубочек . В ресничках, жгутиках, митотическом веретене деления и в цитоплазме простейших, способных к сокращению клеточного тела, функции микротрубочек связаны с сокращением.

На долю микротрубочек приходится около 10% белка, формирующего веретено деления . Именно они обуславливают двойное лучепреломление веретена и лучей звезды. Во время цитокенеза в перемычке, соединяющей две дочерние клетки (и содержащей, многочисленные микротрубочки), наблюдаются перистальтические волны.

Микротрубочкам приписывают роль каркаса (цитоскелета), функция которого состоит в создании и поддержании формы клетки , а также в перераспределении ее содержимого.

Микротрубочки, по-видимому, участвуют в процессе внутриклеточной микроциркуляции , обеспечивающей транспорт небольших молекул внутри клетки. Для этого они образуют и отграничивают в цитоплазме своего рода каналы.

Микротрубочки могут играть определенную роль в локальных изменениях формы клетки , которые происходят при клеточной дифференцировке в ходе эмбрионального развития. Резко выраженное удлинение ядра сперматиды сопровождается возникновением строго упорядоченных по их расположению микротрубочек, которые охватывают ядро в направлении, перпендикулярном его оси; эти микротрубочки образуют вокруг ядра двойную спираль.

Приглашаем Вас ознакомиться с материалами и .

: целлюлозная оболочка, мембрана, цитоплазма с органоидами, ядро, вакуоли с клеточным соком.

Наличие пластид - главная особенность растительной клетки.


Функции клеточной оболочки - определяет форму клетки, защищает от факторов внешней среды.

Плазматическая мембрана - тонкая пленка, состоит из взаимодействующих молекул липидов и белков, отграничивает внутреннее содержимое от внешней среды, обеспечивает транспорт в клетку воды, минеральных и органических веществ путем осмоса и активного переноса, а также удаляет продукты жизнедеятельности.

Цитоплазма - внутренняя полужидкая среда клетки, в которой расположено ядро и органоиды, обеспечивает связи между ними, участвует в основных процессах жизнедеятельности.

Эндоплазматическая сеть - сеть ветвящихся каналов в цитоплазме. Она участвует в синтезе белков, липидов и углеводов, в транспорте веществ. Рибосомы - тельца, расположенные на ЭПС или в цитоплазме, состоят из РНК и белка, участвуют в синтезе белка. ЭПС и рибосомы - единый аппарат синтеза и транспорта белков.

Митохондрии - органоиды, отграниченные от цитоплазмы двумя мембранами. В них окисляются органические вещества и синтезируются молекулы АТФ с участием ферментов. Увеличение поверхности внутренней мембраны, на которой расположены ферменты за счет крист. АТФ - богатое энергией органическое вещество.

Пластиды (хлоропласты, лейкопласты, хромопласты), их содержание в клетке - главная особенность растительного организма. Хлоропласты - пластиды, содержащие зеленый пигмент хлорофилл, который поглощает энергию света и использует ее на синтез органических веществ из углекислого газа и воды. Отграничение хлоропластов от цитоплазмы двумя мембранами, многочисленные выросты - граны на внутренней мембране, в которых расположены молекулы хлорофилла и ферменты.

Комплекс Гольджи - система полостей, отграниченных от цитоплазмы мембраной. Накапливание в них белков, жиров и углеводов. Осуществление на мембранах синтеза жиров и углеводов.

Лизосомы - тельца, отграниченные от цитоплазмы одной мембраной. Содержащиеся в них ферменты ускоряют реакцию расщепления сложных молекул до простых: белков до аминокислот, сложных углеводов до простых, липидов до глицерина и жирных кислот, а также разрушают отмершие части клетки, целые клетки.

Вакуоли - полости в цитоплазме, заполненные клеточным соком, место накопления запасных питательных веществ, вредных веществ; они регулируют содержание воды в клетке.

Ядро - главная часть клетки, покрытая снаружи двух мембранной, пронизанной порами ядерной оболочкой. Вещества поступают в ядро и удаляются из него через поры. Хромосомы - носители наследственной информации о признаках организма, основные структуры ядра, каждая из которых состоит из одной молекулы ДНК в соединении с белками. Ядро - место синтеза ДНК, и-РНК, р-РНК.



Наличие наружной мембраны, цитоплазмы с органоидами, ядра с хромосомами.

Наружная, или плазматическая, мембрана - отграничивает содержимое клетки от окружающей среды (других клеток, межклеточного вещества), состоит из молекул липидов и белка, обеспечивает связь между клетками, транспорт веществ в клетку (пиноцитоз, фагоцитоз) и из клетки.

Цитоплазма - внутренняя полужидкая среда клетки, которая обеспечивает связь между расположенными в ней ядром и органоидами. В цитоплазме протекают основные процессы жизнедеятельности.

Органоиды клетки:

1) эндоплазматическая сеть (ЭПС) - система ветвящихся канальцев, участвует в синтезе белков, липидов и углеводов, в транспорте веществ в клетке;

2) рибосомы - тельца, содержащие рРНК, расположены на ЭПС и в цитоплазме, участвуют в синтезе белка. ЭПС и рибосомы - единый аппарат синтеза и транспорта белка;

3) митохондрии - «силовые станции» клетки, отграничены от цитоплазмы двумя мембранами. Внутренняя образует кристы (складки), увеличивающие ее поверхность. Ферменты на кристах ускоряют реакции окисления органических веществ и синтеза молекул АТФ, богатых энергией;

4) комплекс Гольджи - группа полостей, отграниченных мембраной от цитоплазмы, заполненных белками, жирами и углеводами, которые либо используются в процессах жизнедеятельности, либо удаляются из клетки. На мембранах комплекса осуществляется синтез жиров и углеводов;

5) лизосомы - тельца, заполненные ферментами, ускоряют реакции расщепления белков до аминокислот, липидов до глицерина и жирных -.кислот, полисахаридов до моносахаридов. В лизосомах разрушаются отмершие части клетки, целые и клетки.

Клеточные включения - скопления запасных питательных веществ: белков, жиров и углеводов.

Ядро - наиболее важная часть клетки. Оно покрыто двухмембранной оболочкой с порами, через которые одни вещества проникают в ядро, а Другие поступают в цитоплазму. Хромосомы - основные структуры ядра, носители наследственной информации о признаках организма. Она передается в процессе деления материнской клетки дочерним клеткам, а с половыми клетками - дочерним организмам. Ядро - место синтеза ДНК, иРНК, рРНК.

Задание:

Поясните, почему органоиды называют специализированными структурами клетки?

Ответ: органоиды называют специализированными структурами клетки, так как они выполняют строго определенные функции, в ядре хранится наследственная информация, в митохондриях синтезируется АТФ, в хлоропластах протекает фотосинтез и т.д.

Если у Вас есть вопросы по цитологии, то Вы можете обратиться за помощью к

Коэффициенты