Почему выбросы CO2 — возможно, не самая большая проблема с климатом. Основные поглотители и источники углекислого газа в атмосфере нашей планеты Сколько углекислого газа выбрасывает вулкан

1 Человек и климат.

2 Введение.

Взаимосвязь между энергопотреблением, экономической деятельностью и поступлением

в атмосферу.

Потребление энергии и выбросы углекислого газа.

3 Углерод в природе.

Изотопы углерода.

4 Углерод в атмосфере.

Атмосферный углекислый газ.

Углерод в почве.

5 Прогнозы концентрации углекислого газа в атмосфере на будущее. Основные выводы.

6 Список литературы.


Введение.

Деятельность человека достигла уже такого уровня развития, при котором её влияние на природу приобретает глобальный характер. Природные системы - атмосфера, суша, океан, - а также жизнь на планете в целом подвергаются этим воздействиям. Известно, что на протяжении последнего столетия увеличивалось содержание в атмосфере некоторых газовых составляющих, таких, как двуокись углерода (

), закись азота ( ), метан ( ) и тропосферный озон ( ). Дополнительно в атмосферу поступали и другие газы, не являющиеся естественными компонентами глобальной экосистемы. Главные из них - фторхлоруглеводороды. Эти газовые примеси поглощают и излучают радиацию и поэтому способны влиять на климат Земли. Все эти газы в совокупности можно назвать парниковыми.

Представление о том, что климат мог меняться в результате выброса в атмосферы двуокиси углерода, появилось не сейчас. Аррениус указал на то, что сжигание ископаемого топлива могло привести к увеличению концентрации атмосферного

и тем самым изменить радиационный баланс Земли. В настоящие время мы приблизительно известно, какое количество поступило в атмосферу за счёт сжигания ископаемого топлива и изменений в использовании земель (сведения лесов и расширения сельскохозяйственных площадей), и можно связать наблюдаемое увеличение концентрации атмосферного с деятельностью человека.

Механизм воздействия

на климат заключается в так называемом парниковом эффекте. В то время как для солнечной коротковолновой радиации прозрачен, уходящую от земной поверхности длинноволновую радиацию этот газ поглощает и излучает поглощённую энергию по всем направлениям. Вследствие этого эффекта увеличение концентрации атмосферного приводит к нагреву поверхности Земли и нижней атмосферы. Продолжающийся рост концентрации в атмосфере может привести к изменению глобального климата, поэтому прогноз будущих концентраций углекислого газа является важной задачей.

Поступление углекислого газа в атмосферу

в результате промышленных

выбросов.

Основным антропогенным источником выбросов

является сжигание всевозможных видов углеродосодержащего топлива. В настоящее время экономическое развитие обычно связывается с ростом индустриализации. Исторически сложилось, что подъём экономики зависит от наличия доступных источников энергии и количества сжигаемого ископаемого топлива. Данные о развитии экономики и энергетики для большинства стран за период 1860-1973 гг. Свидетельствуют не только об экономическом росте, но и о росте энергопотребления. Тем не менее одно не является следствием другого. Начиная с 1973 года во многих странах отмечается снижение удельных энергозатрат при росте реальных цен на энергию. Недавнее исследование промышленного использования энергии в США показало, что начиная с 1920 года отношение затрат первичной энергии к экономическому эквиваленту производимых товаров постоянно уменьшалось. Более эффективное использование энергии достигается в результате совершенствования промышленной технологии, транспортных средств и проектирования зданий. Кроме того, в ряде промышленно развитых стран произошли сдвиги в структуре экономики, выразившиеся в переходе от развития сырьевой и перерабатывающей промышленности к расширению отраслей, производящих конечный продукт.

Минимальный уровень потребления энергии на душу населения, необходимый в настоящее время для удовлетворения нужд медицины, образования и рекреации, значительно меняется от региона к региону и от страны к стране. Во многих развивающихся странах значительный рост потребления высококачественных видов топлива на душу населения является существенным фактором для достижения более высокого уровня жизни. Сейчас представляется вероятным, что продолжение экономического роста и достижение желаемого уровня жизни не связаны с уровнем энергопотребления на душу населения, однако этот процесс ещё недостаточно изучен.

Можно предположить, что до достижения середины следующего столетия экономика большинства стран сумеет приспособиться к повышенным ценам на энергию, уменьшая потребности в рабочей силе и в других видах ресурсов, а также увеличивая скорость обработки и передачи информации или, возможно, изменяя структуру экономического баланса между производством товаров и предоставлением услуг. Таким образом, от выбора стратегии развития энергетики с той или иной долей использования угля или ядерного топлива в энергетической системе будет непосредственно зависеть скорость промышленных выбросов

.

Потребление энергии и выбросы

углекислого газа.

Энергия не производится ради самого производства энергии. В промышленно развитых странах основная часть вырабатываемой энергии приходится на промышленность, транспорт, обогрев и охлаждение зданий. Во многих недавно выполненных исследованиях показано, что современный уровень потребления энергии в промышленно развитых станах может быть существенно снижен за счёт применения энергосберегающих технологий. Было рассчитано, что если бы США перешли, при производстве товаров широкого потребления и в сфере услуг, на наименее энергоёмкие технологии при том же объёме производства, то количество поступающего в атмосферу

уменьшилось бы на 25%. Результирующее уменьшение выбросов в целом по земному шару при этом составило бы 7%. Подобный эффект имел бы место и в других промышленно развитых странах. Дальнейшего снижения скорости поступления в атмосферу можно достичь путём изменения структуры экономики в результате внедрения более эффективных методов производства товаров и усовершенствований в сфере предоставления услуг населению.

Углерод в природе.

Среди множества химических элементов, без которых невозможно существование жизни на Земле, углерод является главным.Химические превращения органических веществ связаны со способностью атома углерода образовывать длинные ковалентные цепи и кольца. Биогеохимический цикл углерода, естественно, очень сложный, так как он включает не только функционирование всех форм жизни на Земле, но и перенос неорганических веществ как между различными резервуарами углерода, так и внутри них. Основными резервуарами углерода являются атмосфера, континентальная биомасса, включая почвы, гидросферу с морской биотой и литосферой. В течение последних двух столетий в системе атмосфера - биосфера - гидросфера происходят изменения потоков углерода, интенсивность которых примерно на порядок величины превышает интенсивность геологических процессов переноса этого элемента. По этой причине следует ограничиться анализом взаимодействий в пределах этой системы, включая почвы.

Основные химические соединения и реакции.

Известно более миллиона углеродных соединений, тысячи из которых участвуют в биологических процессах. Атомы углерода могут находиться в одном из девяти возможных состояний окисления: от +IV до -IV. Наиболее распространённое явление - это полное окисление, т.е. +IV, примерами таких соединений могут служить

и . Более 99% углерода в атмосфере содержится в виде углекислого газа. Около 97% углерода в океанах существует в растворённой форме ( . Элементарный углерод присутствует в атмосфере в малых количествах в виде графита и алмаза, а в почве - в форме древесного угля. Ассимиляция углерода в процессе фотосинтеза приводит к образованию восстановленного углерода, который присутствует в биоте, мёртвом органическом веществе почвы, в верхних слоях осадочных пород в виде угля, нефти и газа, захоронённых на больших глубинах, и в литосфере - в виде рассеянного недоокисленного углерода. Некоторые газообразные соединения, содержащие недоокисленный углерод , в частности метан, поступают в атмосферу при восстановлении веществ, происходящем в анаэробных процессах. Хотя при бактериальном разложении образуется несколько различных газообразных соединений, они быстро окисляются, и можно считать, что в систему поступает . Исключением является метан, поскольку он также влияет на парниковый эффект. В океанах содержится значительное количество растворённых соединений органического углерода, процессы окисления которых до известны ещё недостаточно хорошо.

Газировка, вулкан, Венера, рефрижератор – что между ними общего? Углекислый газ. Мы собрали для Вас самую интересную информацию об одном из самых важных химических соединений на Земле.

Что такое диоксид углерода

Диоксид углерода известен в основном в своем газообразном состоянии, т.е. в качестве углекислого газа с простой химической формулой CO2. В таком виде он существует в нормальных условиях – при атмосферном давлении и «обычных» температурах. Но при повышенном давлении, свыше 5 850 кПа (таково, например, давление на морской глубине около 600 м), этот газ превращается в жидкость. А при сильном охлаждении (минус 78,5°С) он кристаллизуется и становится так называемым сухим льдом, который широко используется в торговле для хранения замороженных продуктов в рефрижераторах.

Жидкая углекислота и сухой лед получаются и применяются в человеческой деятельности, но эти формы неустойчивы и легко распадаются.

А вот газообразный диоксид углерода распространен повсюду: он выделяется в процессе дыхания животных и растений и является важной составляющей частью химического состава атмосферы и океана.

Свойства углекислого газа

Углекислый газ CO2 не имеет цвета и запаха. В обычных условиях он не имеет и вкуса. Однако при вдыхании высоких концентраций диоксида углерода можно почувствовать во рту кисловатый привкус, вызванный тем, что углекислый газ растворяется на слизистых и в слюне, образуя слабый раствор угольной кислоты.

Кстати, именно способность диоксида углерода растворяться в воде используется для изготовления газированных вод. Пузырьки лимонада – тот самый углекислый газ. Первый аппарат для насыщения воды CO2 был изобретен еще в 1770 г., а уже в 1783 г. предприимчивый швейцарец Якоб Швепп начал промышленное производство газировки (торговая марка Schweppes существует до сих пор).

Углекислый газ тяжелее воздуха в 1,5 раза, поэтому имеет тенденцию «оседать» в его нижних слоях, если помещение плохо вентилируется. Известен эффект «собачьей пещеры», где CO2 выделяется прямо из земли и накапливается на высоте около полуметра. Взрослый человек, попадая в такую пещеру, на высоте своего роста не ощущает избытка углекислого газа, а вот собаки оказываются прямо в густом слое диоксида углерода и подвергаются отравлению.

CO2 не поддерживает горение, поэтому его используют в огнетушителях и системах пожаротушения. Фокус с тушением горящей свечки содержимым якобы пустого стакана (а на самом деле — углекислым газом) основан именно на этом свойстве диоксида углерода.

Углекислый газ в природе: естественные источники

Углекислый газ в природе образуется из различных источников:

  • Дыхание животных и растений.
    Каждому школьнику известно, что растения поглощают углекислый газ CO2 из воздуха и используют его в процессах фотосинтеза. Некоторые хозяйки пытаются обилием комнатных растений искупить недостатки . Однако растения не только поглощают, но и выделяют углекислый газ в отсутствие света – это часть процесса дыхания. Поэтому джунгли в плохо проветриваемой спальне – не очень хорошая идея: ночью уровень CO2 будет расти еще больше.
  • Вулканическая деятельность.
    Диоксид углерода входит в состав вулканических газов. В местностях с высокой вулканической активностью CO2 может выделяться прямо из земли – из трещин и разломов, называемых мофетами. Концентрация углекислого газа в долинах с мофетами столь высока, что многие мелкие животные, попав туда, умирают.
  • Разложение органических веществ.
    Углекислый газ образуется при горении и гниении органики. Объемные природные выбросы диоксида углерода сопутствуют лесным пожарам.

Углекислый газ «хранится» в природе в виде углеродных соединений в полезных ископаемых: угле, нефти, торфе, известняке. Гигантские запасы CO2 содержатся в растворенном виде в мировом океане.

Выброс углекислого газа из открытого водоема может привести к лимнологической катастрофе, как это случалось, например, в 1984 и 1986 гг. в озерах Манун и Ньос в Камеруне. Оба озера образовались на месте вулканических кратеров – ныне они потухли, однако в глубине вулканическая магма все еще выделяет углекислый газ, который поднимается к водам озер и растворяется в них. В результате ряда климатических и геологических процессов концентрация углекислоты в водах превысила критическое значение. В атмосферу было выброшено огромное количество углекислого газа, который наподобие лавины спустился по горным склонам. Жертвами лимнологических катастроф на камерунских озерах стали около 1 800 человек.

Искусственные источники углекислого газа

Основными антропогенными источниками диоксида углерода являются:

  • промышленные выбросы, связанные с процессами сгорания;
  • автомобильный транспорт.

Несмотря на то, что доля экологичного транспорта в мире растет, подавляющая часть населения планеты еще не скоро будет иметь возможность (или желание) перейти на новые автомобили.

Активное сведение лесов в промышленных целях также ведет к повышению концентрации углекислого газа СО2 в воздухе.

CO2 – один из конечных продуктов метаболизма (расщепления глюкозы и жиров). Он выделяется в тканях и переносится при помощи гемоглобина к легким, через которые выдыхается. В выдыхаемом человеком воздухе около 4,5% диоксида углерода (45 000 ppm) – в 60-110 раз больше, чем во вдыхаемом.

Углекислый газ играет большую роль в регуляции кровоснабжения и дыхания. Повышение уровня CO2 в крови приводит к тому, что капилляры расширяются, пропуская большее количество крови, которое доставляет к тканям кислород и выводит углекислоту.

Дыхательная система тоже стимулируется повышением содержания углекислого газа, а не нехваткой кислорода, как может показаться. В действительности нехватка кислорода долго не ощущается организмом и вполне возможна ситуация, когда в разреженном воздухе человек потеряет сознание раньше, чем почувствует нехватку воздуха. Стимулирующее свойство CO2 используется в аппаратах искусственного дыхания: там углекислый газ подмешивается к кислороду, чтобы «запустить» дыхательную систему.

Углекислый газ и мы: чем опасен СO2

Углекислый газ необходим человеческому организму так же, как кислород. Но так же, как с кислородом, переизбыток углекислого газа вредит нашему самочувствию.

Большая концентрация CO2 в воздухе приводит к интоксикации организма и вызывает состояние гиперкапнии. При гиперкапнии человек испытывает трудности с дыханием, тошноту, головную боль и может даже потерять сознание. Если содержание углекислого газа не снижается, то далее наступает черед – кислородного голодания. Дело в том, что и углекислый газ, и кислород перемещаются по организму на одном и том же «транспорте» – гемоглобине. В норме они «путешествуют» вместе, прикрепляясь к разным местам молекулы гемоглобина. Однако повышенная концентрация углекислого газа в крови понижает способность кислорода связываться с гемоглобином. Количество кислорода в крови уменьшается и наступает гипоксия.

Такие нездоровые для организма последствия наступают при вдыхании воздуха с содержанием CO2 больше 5 000 ppm (таким может быть воздух в шахтах, например). Справедливости ради, в обычной жизни мы практически не сталкиваемся с таким воздухом. Однако и намного меньшая концентрация диоксида углерода отражается на здоровье не лучшим образом.

Согласно выводам некоторых , уже 1 000 ppm CO2 вызывает у половины испытуемых утомление и головную боль. Духоту и дискомфорт многие люди начинают ощущать еще раньше. При дальнейшем повышении концентрации углекислого газа до 1 500 – 2 500 ppm критически , мозг «ленится» проявлять инициативу, обрабатывать информацию и принимать решения.

И если уровень 5 000 ppm почти невозможен в повседневной жизни, то 1 000 и даже 2 500 ppm легко могут быть частью реальности современного человека. Наш показал, что в редко проветриваемых школьных классах уровень CO2 значительную часть времени держится на отметке выше 1 500 ppm, а иногда подскакивает выше 2 000 ppm. Есть все основания предполагать, что во многих офисах и даже квартирах ситуация похожая.

Безопасным для самочувствия человека уровнем углекислого газа физиологи считают 800 ppm.

Еще одно исследование обнаружило связь между уровнем CO2 и окислительным стрессом: чем выше уровень диоксида углерода, тем больше мы страдаем от , который разрушает клетки нашего организма.

Углекислый газ в атмосфере Земли

В атмосфере нашей планеты всего около 0,04% CO2 (это приблизительно 400 ppm), а совсем недавно было и того меньше: отметку в 400 ppm углекислый газ перешагнул только осенью 2016 года. Ученые связывают рост уровня CO2 в атмосфере с индустриализацией: в середине XVIII века, накануне промышленного переворота, он составлял всего около 270 ppm.

Правообладатель иллюстрации Getty Images Image caption Из-за вредных выбросов в мире к концу 2017 году будет произведен 41 миллиард тонн углекислого газа

В 2017 году прогнозируется первый за четыре года рост мировых выбросов углекислого газа. Главной причиной ученые считают интенсивное потребление угля в Китае, который переживает бурный экономический рост.

Ученые пока не могут сказать определенно, будет ли это повышение количества выбросов разовым, или с 2017 года начнется новая фаза роста.

По словам ученых, планета должна пройти пик до 2020 года, чтобы снизить риск глобального потепления в ближайшем столетии.

Организация Global Carbon Project с 2006 года анализирует и публикует данные о динамике выбросов углекислого газа.

Количество выбросов росло примерно на 3% в год, но затем с 2014 по 2016 год либо снижалось, либо оставалось на том же уровне.

Согласно последним данным, в 2017 году деятельность человека привела к тому, что выбросы по всему миру увеличились на 2%.

Пока нет данных о точном количестве выбросов, но все исследователи сходятся на том, что их количество растет.

"Уровень выбросов CO2 по всему миру демонстрирует уверенный рост после трех лет стабильности. Это очень печально", - говорит руководитель исследовательской группы, профессор Корин Ле Квере из Университета Восточной Англии.

"Деятельность человека приводит к тому, что к концу 2017 году будет произведен 41 миллиард тонн углекислого газа. У нас почти не остается времени, чтобы удерживать ежегодное глобальное потепление на уровне двух градусов Цельсия, не говоря уже о полутора градусах", - продолжает она.

Правообладатель иллюстрации Getty Images Image caption Активное использование угля привело к тому, что количество углекислого газа в атмосфере впервые за четыре года начало расти

Важнейшую роль в текущем повышении играет Китай. На его долю приходится 28% мировых выбросов. Из-за интенсивного использования угля уровень выбросов в стране вырос на 3,5% в 2017 году.

Еще одна причина заключается в том, что в китайских реках падает уровень воды. Из-за этого снижается количество энергии, которые вырабатывают гидроэлектростанции. Чтобы ликвидировать разницу, страна замещает недостаток энергии за счет использования газа и угля.

Выбросы, которые производит США, продолжают снижаться, но не так интенсивно, как ожидалось изначально.

Из-за повышения цен на природный газ и электричество их потребление упало или было частично заменено возобновляемыми источниками энергии.

Потребление угля в США также выросло в этом году, но незначительно - всего на полпроцента.

По прогнозам, выбросы, которые производит Индия, в этом году вырастут на 2%. Это существенно ниже, чем за последнее десятилетие, в течение которого средний рост ежегодно составлял около 6%.

Тем не менее, эксперты уверены, что это может оказаться временным колебанием, вызванным несколькими факторами, затрудняющими использование нефти и цемента в стране.

Пора действовать

В Европе снижение также идет медленнее, чем прогнозировалось. В 2017 году падение составило только 0,2% при среднем показателе 2,2% за десять лет.

По словам профессора Ле Квере, самой острой темой по всему миру остается использование газа и нефти.

"Потребление угля то повышается, то снижается, при этом в использовании газа и нефти нет заметных изменений. И это достаточно тревожно", - объясняет она.

Правообладатель иллюстрации Getty Images Image caption Ученые призывают не дожидаться вступления в силу Парижского соглашения, а менять в первую очередь национальную политику в области климата

Доклад ее исследовательской группы был представлен на Конференции ООН в Бонне, где обсуждаются будущие положения Парижского соглашения.

Ученые, которые работали над исследованием, утверждают, что необходимо действовать быстрее.

"Огромное количество дипломатов пытаются выработать новые правила. Но все это довольно бессмысленно, пока они не отправятся в свои страны и не предпримут решительные меры в климатической политике. Это самое слабое место сейчас", - говорит доктор Глен Питерс из Центра международных климатических исследований в Норвегии.

"Страны должны активнее развивать климатическую политику, но все, напротив, движется назад", - продолжает он.

Доклад, скорее всего, вызовет еще большее напряжение между развивающимися и развитыми странами.

Все больше недовольства вызывает тот факт, что основное внимание уделяется мерам, которые будут приняты в рамках Парижского соглашения в будущем. До этого момента не предусмотрено практически ничего.

Развивающиеся страны ожидают, что их развитие партнеры ужесточат ограничения выбросов углекислого газа в течение следующих трех лет.

"Климат не позволит нам ждать до 2020 года, когда Парижское соглашение вступит в силу", - говорит представитель Никарагуа Пол Оквист.

"Изменения климата происходят прямо сейчас, и важно, чтобы сокращение выбросов стало главной темой обсуждения на этом саммите", - заключает он.

Мировые выбросы углекислого газа в прошлом году достигли рекордных значений. Как говорится в докладе Международного энергетического агентства (МЭА), в 2018-м они составили 33 млрд тонн.

“В связи с повышением спроса на энергоресурсы в 2018 году глобальные выбросы CO2, связанные с энергетикой, выросли на 1,7% по сравнению с прошлым годом до исторического максимума в 33,1 Гт CO2, – отмечают авторы исследования. – 85% увеличения выбросов пришлось на Китай, Индию и США, в то время как в Германии, Японии, Мексике, Франции и Великобритании они сократились”.

Значительный рост спроса на энергоресурсы стал “для многих неожиданностью” и еще более затруднил достижение странами целей, связанных с глобальным климатом, заявил в этой связи глава МЭА Фатих Бироль.

“Мы наблюдаем необычайный рост мирового спроса на энергоресурсы, который увеличивается самыми быстрыми темпами в нынешнем десятилетии”, – приводит слова Бирола газета The Financial Times. В то же время, по его мнению, вряд ли можно ожидать таких же темпов роста спроса на энергоресурсы в 2019 году.

Однако выбросы CO2 – это только часть проблемы. Согласно более раннему докладу МЭА, добыча нефти и газа, несмотря на принимаемые нефтекомпаниями активные меры, дает очень значимую часть мировых выбросов метана.

В частности, на деятельность, связанную с добычей, транспортировкой, переработкой и потреблением углеводородов приходится 13% эмиссии метана во всем мире. Утечки происходят на всех этапах производственного цикла, причем мировые нефтегазовые компании пока не в состоянии точно измерить объем этих утечек.

В целом же на деятельность человека приходится 60% глобальной эмиссии метана, остальные 40% – естественной просачивание газа из глубинных слоев почвы, болотные выбросы, продукты жизнедеятельности животных и гниение погибшей растительности.

Любопытно, однако, что американское аэрокосмическое агентство NASA оценивает ситуацию иначе. В начале прошлого года агентство обнародовало результаты нового исследования, согласно которому серьезный рост концентрации метана в атмосфере в последние годы нельзя списывать на скотоводство и испарения растущих «мерзлотных» болот.

Более половины эмиссии этого парникового газа – на совести мировой топливной индустрии. В итоговом докладе, опубликованном в журнале Nature Communications отмечается, что средний объем ежегодных выбросов метана составляет сейчас от 12 до 19 млн тонн в год.

Ранее такой разброс объяснялся колебаниями численности крупного рогатого скота, особенно, коров – одного из основных эмитентов метана, и также постепенным таянием вечной мерзлоты, приводящим к образованию больших болот, насыщенных этим газом.

Однако спутниковые исследования NASA показали, что выбросы метана от производства и использования углеводородов и угля повышаются быстрее, чем ранее считали. Так, например, эмиссия нефтедобывающей промышленности канадской Альберты оказалась на 25-50% выше, чем более ранние оценки.

В цивилизованных странах показатель выбросов двуокиси углерода в последние три-четыре года вошел в число основных характеристик автомобиля. Ирония в том, что сократить количество вылетающего из трубы углекислого газа можно лишь одним путем - урезать аппетит двигателя. Ведь масса выплюнутого автомобилем CO2 и литры съеденного топлива напрямую зависят друг от друга.

Поэтому на передовой в войне с опасным врагом стоят отряды мотористов и инженеров автомобильных компаний. Основные средства борьбы за чистоту выхлопа известны еще с середины 90-х годов прошлого века: изменяемые фазы газораспределения, впускные тракты с изменяемой длиной, облегченные детали и узлы, не говоря уже о различных материалах и технологиях, снижающих потери на трение. Кроме того, по оценкам инженеров компании «Бош», выпускающей топливную аппаратуру для большей части европейских моделей, одно только взаимодействие турбонаддува (или механического нагнетателя) с непосредственным впрыском снижает вредные выбросы на величину до 4%. А если взять эту парочку и снять ту же мощность с меньшего объема (популярный нынче принцип даунсайзинга), то выбросы можно сократить на треть.

«Если машина не может коптить, то и ехать не может», - радостно констатировал главный герой чешского мультфильма «Крот в городе», закупоривая сардельками выхлопные трубы. Действительно, самый дешевый и действенный способ снизить выбросы углекислого газа - заглушить двигатель. Сейчас за водителя это делает электроника. Например, система «старт-стоп», которой оснащают уже не только дорогие модели, выключает мотор на светофорах, снижая выбросы на 4–8%. Различные гибридные схемы вносят еще более ощутимый вклад - аж до 25% в определенных режимах движения. Наконец, двигатель можно заглушить частично. Отключение половины цилиндров до недавнего времени было прерогативой многоцилиндровых V-образных двигателей, но такую систему начинают устанавливать и на более компактные моторы. Например, концерн «Фольксваген» оснастил ею новые «четверки» с турбонаддувом.

Впрочем, экономить топливо и снижать выбросы можно, улучшая и другие показатели. Подсчеты конструкторов показывают, что снижение коэффициента аэродинамического сопротивления всего на 0,02 экономит 0,4 л/100 км при скорости 130 км/ч. Применительно к CO2 получается 3–6%. Еще столько же спишут шины с пониженным сопротивлением качению. Недаром именно такими оснащают все модели из экономичных линеек вроде «Блюэффишнс» у «Мерседес-Бенца» и «Блюмоушн» у «Фольксвагена».

В итоге новое поколение машин по сравнению с предшественниками на 13–30% экологичнее и экономичнее. По крайней мере, так утверждают производители. Автомобили с литровыми двигателями уже перешагнули психологическую черту выбросов CO2 в 100 г/км или вплотную приблизились к ней. И это без гибридных технологий, сулящих большую выгоду.

Есть у этой медали и неприглядная сторона: расплачиваться за все достижения придется потребителю. Во-первых, при покупке - производителю охота вернуть сумму, потраченную на разработку, внедрение и производство всех ноу-хау. Во-вторых, частенько и в ходе эксплуатации. Увы, надежность не самая сильная сторона современных автомобилей. А ведь даже некрупный ремонт порой больно бьет по карману. Помнят ли об этом те, кто неутомимо ужесточает нормы выбросов?

НЕ БЕНЗИНОМ ЕДИНЫМ

С точки зрения выбросов СО2 все виды автомобильного топлива предпочтительнее бензина. Даже более «грязная» (как полагают многие) солярка: легковые турбодизели, особенно большого объема, сдержаннее бензиновых моторов сопоставимой мощности на 5–15%. Но это не повод призывать к скорейшей дизелизации. Иначе возникнут проблемы со сбытом горючего, ведь при переработке нефти получается примерно равное количество бензина и дизтоплива. Кроме того, по выбросам сажи ДТ впереди планеты всей.

Альтернативные виды топлива менее щедры на выброс СО2 (г/км), чем давно знакомый бензин. Но у каждого есть как плюсы, так и минусы. За основу при расчетах немецкие исследователи взяли атмосферный двигатель со средним расходом 7 л/100 км:

Другая альтернатива - биотопливо. Вдумайтесь: двигатель, работающий на биометане, выделяет СО2 примерно в 30 раз меньше, чем бензиновый (ЗР, 2012, № 4 ). Весомое преимущество! Однако массовое применение сдерживает неразвитая инфраструктура, а вкладываться в ее развитие никто не спешит. Вдобавок производство биодизельного топлива ограничено посевными площадями, на которых выращивают сырье.

Наконец, самое модное направление - использование электричества. Сюда направляют больше всего средств, а стоит ли? Выработка электрической энергии одаривает природу углекислым газом в два-три раза щедрее, чем весь транспорт, вместе взятый! Даже маленький «Смарт» с электрическим двигателем, если высчитать вред от потребляемой им электроэнергии, выделяет 71 г/км СО2. Немало, учитывая размеры машины! Так что агитировать за массовый и быстрый переход на электротягу, пожалуй, рановато. По крайней мере, пока большую часть энергии не будут вырабатывать возобновляемые источники вроде ветряков или солнечных батарей.

Примерные доли эмиссии СО2, приходящиеся на различные источники. Они зависят от уровня развития конкретной страны:

ПОД ПРИСМОТРОМ СТАРШИХ

В Европе автомобилям разрешено выбрасывать 130 г/км CO2 (в среднем по модельному ряду для каждого производителя). Норма действует до 2015 года, а к 2020-му порог снизят до 95 г/км. Однако роль государства не ограничивается лишь введением более строгих экологических норм. Оно должно стимулировать граждан покупать новые автомобили, которые извергают значительно меньше вредных газов. Например, за 15 лет БМВ 7-й серии при прежней мощности двигателя стал чадить на треть скромнее. Наряду с кнутом, каким служат высокие налоги на старые машины, есть и пряник: программа утилизации при поддержке правительства.

Другое направление деятельности государства помимо гораздо больших финансовых затрат требует и привлечения грамотных специалистов - это планирование дорожной сети. Автомобиль на крейсерской скорости выбрасывает гораздо меньше СО2, чем толкающийся в многокилометровых заторах. В идеале надо закладывать новые трассы на ранних стадиях застройки, но иногда приходится вписывать дорогу в уже существующую инфраструктуру. И как ни дико это звучит, лучшим выходом для экологии может иногда стать вырубка леса под новую магистраль.

Полсотни квадратных метров леса нейтрализуют углекислый газ от дыхания одного человека. В пробке на этой же площади помещаются три легковые машины, источающие двуокись углерода в самом неэкономичном режиме. Получается, вырубка деревьев - порой логичный и разумный способ снизить выбросы парниковых газов:

Как видите, существует множество вариантов для снижения выбросов этого парникового газа. Важно выбрать решения, которые будут не только красивыми, но и по-настоящему действенными. Только тогда удастся сберечь и деньги, и здоровье.

Механика