Как решать химические реакции по химии. Как составить химическое уравнение: правила, примеры

Химическим уравнением можно назвать визуализацию химической реакции с помощью знаков математики и химических формул. Такое действие является отображением какой-либо реакции, в процессе которой появляются новые вещества.

Химические задания: виды

Химическое уравнение - это последовательность химических реакций. Они основываются на законе сохранения массы каких-либо веществ. Существует всего два вида реакций:

  • Соединения - к ним относятся (происходит замена атомов сложных элементов атомами простых реагентов), обмена (замещение составными частями двух сложных веществ), нейтрализации (реакция кислот с основаниями, образование соли и воды).
  • Разложения - образование двух и более сложных или простых веществ из одного сложного, но состав их более простой.

Химические реакции также можно разделить на типы: экзотермические (происходят с выделением теплоты) и эндотермические (поглощение теплоты).

Этот вопрос волнует многих учащихся. Мы предлегаем несколько простых советов, которые подскажут, как научиться решать химические уравнения:

  • Желание понять и освоить. Нельзя отступать от своей цели.
  • Теоретические знания. Без них невозможно составить даже элементарную формулу соединения.
  • Правильность записи химической задачи - даже малейшая ошибка в условии сведет к нулю все ваши усилия в ее решении.

Желательно, чтобы сам процесс решения химических уравнений был для вас увлекательным. Тогда химические уравнения (как решать их и какие моменты нужно запомнить, мы разберем в этой статье) перестанут быть для вас проблемными.

Задачи, которые решаются с использованием уравнений химических реакций

К таким задачам относятся:

  • Нахождение массы компонента по данной массе другого реагента.
  • Задания по комбинации «масса-моль».
  • Расчеты по комбинации «объем-моль».
  • Примеры с применением термина «избыток».
  • Расчеты с использованием реагентов, один из которых не лишен примесей.
  • Задачи на распад результата реакции и на производственные потери.
  • Задачи на поиск формулы.
  • Задачи, в которых реагенты предоставлены в виде растворов.
  • Задачи, содержащие смеси.

Каждый из этих видов задач включает в себя несколько подтипов, которые обычно подробно рассматриваются еще на первых школьных уроках химии.

Химические уравнения: как решать

Существует алгоритм, который помогает справиться с практически любым заданием из этой непростой науки. Чтобы понять, как правильно решать химические уравнения, нужно придерживаться определенной закономерности:

  • При записи уравнения реакции не забывать расставлять коэффициенты.
  • Определение способа, с помощью которого можно найти неизвестные данные.
  • Правильность применения в выбранной формуле пропорций или использование понятия «количество вещества».
  • Обратить внимание на единицы измерений.

В конце важно обязательно проверить задачу. В процессе решения вы могли допустить элементарную ошибку, которая повлияла на результат решения.

Основные правила составления химических уравнений

Если придерживаться правильной последовательности, то вопрос о том, что такое химические уравнения, как решать их, не будет вас волновать:

  • Формулы веществ, которые вступают в реакцию (реагенты), записываются в левой части уравнения.
  • Формулы веществ, которые образуются в результате реакции, записываются уже в правой части уравнения.

Составление уравнения реакции основывается на законе сохранения массы веществ. Следовательно, обе части уравнения должны быть равны, т. е. с одинаковым числом атомов. Достичь этого можно при условии правильной расстановки коэффициентов перед формулами веществ.

Расстановка коэффициентов в химическом уравнении

Алгоритм расстановки коэффициентов таков:

  • Подсчет в левой и правой части уравнения атомов каждого элемента.
  • Определение меняющегося количества атомов у элемента. Также нужно найти Н.О.К.
  • Получение коэффициентов достигается путем деления Н.О.К. на индексы. Обязательно проставить данные цифры перед формулами.
  • Следующим шагом является пересчет количества атомов. Иногда возникает необходимость в повторении действия.

Уравнивание частей химической реакции происходит с помощью коэффициентов. Расчет индексов производится через валентность.

Для успешного составления и решения химических уравнений необходимо учитывать физические свойства вещества, такие как объем, плотность, масса. Также нужно знать состояние реагирующей системы (концентрация, температура, давление), разбираться в единицах измерения данных величин.

Для понимания вопроса о том, что такое химические уравнения, как решать их, необходимо использование основных законов и понятий этой науки. Чтобы успешно вычислять подобные задачи, необходимо также вспомнить или освоить навыки математических операций, уметь совершать действия с числами. Надеемся, с нашими советами вам будет легче справляться с химическими уравнениями.

Поговорим о том, как составить химическое уравнение, ведь именно они являются основными элементами данной дисциплины. Благодаря глубокому осознанию всех закономерностей взаимодействий и веществ, можно управлять ими, применять их в различных сферах деятельности.

Теоретические особенности

Составление химических уравнений - важный и ответственный этап, рассматриваемый в восьмом классе общеобразовательных школ. Что должно предшествовать данному этапу? Прежде чем педагог расскажет своим воспитанникам о том, как составить химическое уравнение, важно познакомить школьников с термином «валентность», научить их определять данную величину у металлов и неметаллов, пользуясь таблицей элементов Менделеева.

Составление бинарных формул по валентности

Для того чтобы понять, как составить химическое уравнение по валентности, для начала нужно научиться составлять формулы соединений, состоящих из двух элементов, пользуясь валентностью. Предлагаем алгоритм, который поможет справиться с поставленной задачей. Например, необходимо составить формулу оксида натрия.

Сначала важно учесть, что тот химический элемент, который в названии упоминается последним, в формуле должен располагаться на первом месте. В нашем случае первым будет записываться в формуле натрий, вторым кислород. Напомним, что оксидами называют бинарные соединения, в которых последним (вторым) элементом обязательно должен быть кислород со степенью окисления -2 (валентностью 2). Далее по таблице Менделеева необходимо определить валентности каждого из двух элементов. Для этого используем определенные правила.

Так как натрий - металл, который располагается в главной подгруппе 1 группы, его валентность является неизменной величиной, она равна I.

Кислород - это неметалл, поскольку в оксиде он стоит последним, для определения его валентности мы из восьми (число групп) вычитаем 6 (группу, в которой находится кислород), получаем, что валентность кислорода равна II.

Между определенными валентностями находим наименьшее общее кратное, затем делим его на валентность каждого из элементов, получаем их индексы. Записываем готовую формулу Na 2 O.

Инструкция по составлению уравнения

А теперь подробнее поговорим о том, как составить химическое уравнение. Сначала рассмотрим теоретические моменты, затем перейдем к конкретным примерам. Итак, составление химических уравнений предполагает определенный порядок действий.

  • 1-й этап. Прочитав предложенное задание, необходимо определить, какие именно химические вещества должны присутствовать в левой части уравнения. Между исходными компонентами ставится знак «+».
  • 2-й этап. После знака равенства необходимо составить формулу продукта реакции. При выполнении подобных действий потребуется алгоритм составления формул бинарных соединений, рассмотренный нами выше.
  • 3-й этап. Проверяем количество атомов каждого элемента до и после химического взаимодействия, в случае необходимости ставим дополнительные коэффициенты перед формулами.

Пример реакции горения

Попробуем разобраться в том, как составить химическое уравнение горения магния, пользуясь алгоритмом. В левой части уравнения записываем через сумму магний и кислород. Не забываем о том, что кислород является двухатомной молекулой, поэтому у него необходимо поставить индекс 2. После знака равенства составляем формулу получаемого после реакции продукта. Им будет в котором первым записан магний, а вторым в формуле поставим кислород. Далее по таблице химических элементов определяем валентности. Магний, находящийся во 2 группе (главной подгруппе), имеет постоянную валентность II, у кислорода путем вычитания 8 - 6 также получаем валентность II.

Запись процесса будет иметь вид: Mg+O 2 =MgO.

Для того чтобы уравнение соответствовало закону сохранения массы веществ, необходимо расставить коэффициенты. Сначала проверяем количество кислорода до реакции, после завершения процесса. Так как было 2 атома кислорода, а образовался всего один, в правой части перед формулой оксида магния необходимо добавить коэффициент 2. Далее считаем число атомов магния до и после процесса. В результате взаимодействия получилось 2 магния, следовательно, в левой части перед простым веществом магнием также необходим коэффициент 2.

Итоговый вид реакции: 2Mg+O 2 =2MgO.

Пример реакции замещения

Любой конспект по химии содержит описание разных видов взаимодействий.

В отличие от соединения, в замещении и в левой, и в правой части уравнения будет два вещества. Допустим, необходимо написать реакцию взаимодействия между цинком и Алгоритм написания используем стандартный. Сначала в левой части через сумму пишем цинк и соляную кислоту, в правой части составляем формулы получаемых продуктов реакции. Так как в электрохимическом ряду напряжений металлов цинк располагается до водорода, в данном процессе он вытесняет из кислоты молекулярный водород, образует хлорид цинка. В результате получаем следующую запись: Zn+HCL=ZnCl 2 +H 2 .

Теперь переходим к уравниванию количества атомов каждого элемента. Так как в левой части хлора был один атом, а после взаимодействия их стало два, перед формулой соляной кислоты необходимо поставить коэффициент 2.

В итоге получаем готовое уравнение реакции, соответствующее закону сохранения массы веществ: Zn+2HCL=ZnCl 2 +H 2 .

Заключение

Типичный конспект по химии обязательно содержит несколько химических превращений. Ни один раздел этой науки не ограничивается простым словесным описанием превращений, процессов растворения, выпаривания, обязательно все подтверждается уравнениями. Специфика химии заключается в том, что с все процессы, которые происходят между разными неорганическими либо органическими веществами, можно описать с помощью коэффициентов, индексов.

Чем еще отличается от других наук химия? Химические уравнения помогают не только описывать происходящие превращения, но и проводить по ним количественные вычисления, благодаря которым можно осуществлять лабораторное и промышленное получение разных веществ.

Достаточно часто школьникам и студентам приходится составлять т. н. ионные уравнения реакций. В частности, именно этой теме посвящена задача 31, предлагаемая на ЕГЭ по химии. В данной статье мы подробно обсудим алгоритм написания кратких и полных ионных уравнений, разберем много примеров разного уровня сложности.

Зачем нужны ионные уравнения

Напомню, что при растворении многих веществ в воде (и не только в воде!) происходит процесс диссоциации - вещества распадаются на ионы. Например, молекулы HCl в водной среде диссоциируют на катионы водорода (H + , точнее, H 3 O +) и анионы хлора (Cl -). Бромид натрия (NaBr) находится в водном растворе не в виде молекул, а в виде гидратированных ионов Na + и Br - (кстати, в твердом бромиде натрия тоже присутствуют ионы).

Записывая "обычные" (молекулярные) уравнения, мы не учитываем, что в реакцию вступают не молекулы, а ионы. Вот, например, как выглядит уравнение реакции между соляной кислотой и гидроксидом натрия:

HCl + NaOH = NaCl + H 2 O. (1)

Разумеется, эта схема не совсем верно описывает процесс. Как мы уже сказали, в водном растворе практически нет молекул HCl, а есть ионы H + и Cl - . Так же обстоят дела и с NaOH. Правильнее было бы записать следующее:

H + + Cl - + Na + + OH - = Na + + Cl - + H 2 O. (2)

Это и есть полное ионное уравнение . Вместо "виртуальных" молекул мы видим частицы, которые реально присутствуют в растворе (катионы и анионы). Не будем пока останавливаться на вопросе, почему H 2 O мы записали в молекулярной форме. Чуть позже это будет объяснено. Как видите, нет ничего сложного: мы заменили молекулы ионами, которые образуются при их диссоциации.

Впрочем, даже полное ионное уравнение не является безупречным. Действительно, присмотритесь повнимательнее: и в левой, и в правой частях уравнения (2) присутствуют одинаковые частицы - катионы Na + и анионы Cl - . В процессе реакции эти ионы не изменяются. Зачем тогда они вообще нужны? Уберем их и получим краткое ионное уравнение:

H + + OH - = H 2 O. (3)

Как видите, все сводится к взаимодействию ионов H + и OH - c образованием воды (реакция нейтрализации).

Все, полное и краткое ионные уравнения записаны. Если бы мы решали задачу 31 на ЕГЭ по химии, то получили бы за нее максимальную оценку - 2 балла.


Итак, еще раз о терминологии:

  • HCl + NaOH = NaCl + H 2 O - молекулярное уравнение ("обычное" уравнения, схематично отражающее суть реакции);
  • H + + Cl - + Na + + OH - = Na + + Cl - + H 2 O - полное ионное уравнение (видны реальные частицы, находящиеся в растворе);
  • H + + OH - = H 2 O - краткое ионное уравнение (мы убрали весь "мусор" - частицы, которые не участвуют в процессе).

Алгоритм написания ионных уравнений

  1. Составляем молекулярное уравнение реакции.
  2. Все частицы, диссоциирующие в растворе в ощутимой степени, записываем в виде ионов; вещества, не склонные к диссоциации, оставляем "в виде молекул".
  3. Убираем из двух частей уравнения т. н. ионы-наблюдатели, т. е. частицы, которые не участвуют в процессе.
  4. Проверяем коэффициенты и получаем окончательный ответ - краткое ионное уравнение.

Пример 1 . Составьте полное и краткое ионные уравнения, описывающие взаимодействие водных растворов хлорида бария и сульфата натрия.

Решение . Будем действовать в соответствии с предложенным алгоритмом. Составим сначала молекулярное уравнение. Хлорид бария и сульфат натрия - это две соли. Заглянем в раздел справочника "Свойства неорганических соединений" . Видим, что соли могут взаимодействовать друг с другом, если в ходе реакции образуется осадок. Проверим:

Упражнение 2 . Дополните уравнения следующих реакций:

  1. KOH + H 2 SO 4 =
  2. H 3 PO 4 + Na 2 O=
  3. Ba(OH) 2 + CO 2 =
  4. NaOH + CuBr 2 =
  5. K 2 S + Hg(NO 3) 2 =
  6. Zn + FeCl 2 =

Упражнение 3 . Напишите молекулярные уравнения реакций (в водном растворе) между: а) карбонатом натрия и азотной кислотой, б) хлоридом никеля (II) и гидроксидом натрия, в) ортофосфорной кислотой и гидроксидом кальция, г) нитратом серебра и хлоридом калия, д) оксидом фосфора (V) и гидроксидом калия.

Искренне надеюсь, что у вас не возникло проблем с выполнением этих трех заданий. Если это не так, необходимо вернуться к теме "Химические свойства основных классов неорганических соединений".

Как превратить молекулярное уравнение в полное ионное уравнение

Начинается самое интересное. Мы должны понять, какие вещества следует записывать в виде ионов, а какие - оставить в "молекулярной форме". Придется запомнить следующее.

В виде ионов записывают:

  • растворимые соли (подчеркиваю, только соли хорошо растворимые в воде);
  • щелочи (напомню, что щелочами называют растворимые в воде основания, но не NH 4 OH);
  • сильные кислоты (H 2 SO 4 , HNO 3 , HCl, HBr, HI, HClO 4 , HClO 3 , H 2 SeO 4 , ...).

Как видите, запомнить этот список совсем несложно: в него входят сильные кислоты и основания и все растворимые соли. Кстати, особо бдительным юным химикам, которых может возмутить тот факт, что сильные электролиты (нерастворимые соли) не вошли в этот перечень, могу сообщить следующее: НЕвключение нерастворимых солей в данный список вовсе не отвергает того, что они являются сильными электролитами.

Все остальные вещества должны присутствовать в ионных уравнениях в виде молекул. Тем требовательным читателям, которых не устраивает расплывчатый термин "все остальные вещества", и которые, следуя примеру героя известного фильма, требуют "огласить полный список" даю следующую информацию.

В виде молекул записывают:

  • все нерастворимые соли;
  • все слабые основания (включая нерастворимые гидроксиды, NH 4 OH и сходные с ним вещества);
  • все слабые кислоты (H 2 СO 3 , HNO 2 , H 2 S, H 2 SiO 3 , HCN, HClO, практически все органические кислоты...);
  • вообще, все слабые электролиты (включая воду!!!);
  • оксиды (всех типов);
  • все газообразные соединения (в частности, H 2 , CO 2 , SO 2 , H 2 S, CO);
  • простые вещества (металлы и неметаллы);
  • практически все органические соединения (исключение - растворимые в воде соли органических кислот).

Уф-ф, кажется, я ничего не забыл! Хотя проще, по-моему, все же запомнить список N 1. Из принципиально важного в списке N 2 еще раз отмечу воду.


Давайте тренироваться!

Пример 2 . Составьте полное ионное уравнение, описывающие взаимодействие гидроксида меди (II) и соляной кислоты.

Решение . Начнем, естественно, с молекулярного уравнения. Гидроксид меди (II) - нерастворимое основание. Все нерастворимые основания реагируют с сильными кислотами с образованием соли и воды:

Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O.

А теперь выясняем, какие вещества записывать в виде ионов, а какие - в виде молекул. Нам помогут приведенные выше списки. Гидроксид меди (II) - нерастворимое основание (см. таблицу растворимости), слабый электролит. Нерастворимые основания записывают в молекулярной форме. HCl - сильная кислота, в растворе практически полностью диссоциирует на ионы. CuCl 2 - растворимая соль. Записываем в ионной форме. Вода - только в виде молекул! Получаем полное ионное уравнение:

Сu(OH) 2 + 2H + + 2Cl - = Cu 2+ + 2Cl - + 2H 2 O.

Пример 3 . Составьте полное ионное уравнение реакции диоксида углерода с водным раствором NaOH.

Решение . Диоксид углерода - типичный кислотный оксид, NaOH - щелочь. При взаимодействии кислотных оксидов с водными растворами щелочей образуются соль и вода. Составляем молекулярное уравнение реакции (не забывайте, кстати, о коэффициентах):

CO 2 + 2NaOH = Na 2 CO 3 + H 2 O.

CO 2 - оксид, газообразное соединение; сохраняем молекулярную форму. NaOH - сильное основание (щелочь); записываем в виде ионов. Na 2 CO 3 - растворимая соль; пишем в виде ионов. Вода - слабый электролит, практически не диссоциирует; оставляем в молекулярной форме. Получаем следующее:

СO 2 + 2Na + + 2OH - = Na 2+ + CO 3 2- + H 2 O.

Пример 4 . Сульфид натрия в водном растворе реагирует с хлоридом цинка с образованием осадка. Составьте полное ионное уравнение данной реакции.

Решение . Сульфид натрия и хлорид цинка - это соли. При взаимодействии этих солей выпадает осадок сульфида цинка:

Na 2 S + ZnCl 2 = ZnS↓ + 2NaCl.

Я сразу запишу полное ионное уравнение, а вы самостоятельно проанализируете его:

2Na + + S 2- + Zn 2+ + 2Cl - = ZnS↓ + 2Na + + 2Cl - .

Предлагаю вам несколько заданий для самостоятельной работы и небольшой тест.

Упражнение 4 . Составьте молекулярные и полные ионные уравнения следующих реакций:

  1. NaOH + HNO 3 =
  2. H 2 SO 4 + MgO =
  3. Ca(NO 3) 2 + Na 3 PO 4 =
  4. CoBr 2 + Ca(OH) 2 =

Упражнение 5 . Напишите полные ионные уравнения, описывающие взаимодействие: а) оксида азота (V) с водным раствором гидроксида бария, б) раствора гидроксида цезия с иодоводородной кислотой, в) водных растворов сульфата меди и сульфида калия, г) гидроксида кальция и водного раствора нитрата железа (III).

Химические реакции это химические взаимодействия веществ. Изображение реакций при помощи химических формул и математических знаков называется химическим уравнением.

При химических реакциях из атомов вступивших в реакцию веществ образуются новые вещества, и число атомов каждого элемента до реакции равно числу атомов этих элементов после реакции, т.е. в левой и в правой частях уравнения число атомов всех элементов должно быть одинаковым − закон сохранения массы веществ .

Составим уравнение реакции растворения гидроксида алюминия в избытке серной кислоты. Схема реакции:

Для составления уравнения реакции в схеме реакции необходимо подобрать коэффициенты. Подбор коэффициентов обычно начинают с формулы вещества, содержащего наибольшее число атомов элементов, независимо от того, где находится вещество – справа или слева от знака равенства. Уравниваем число атомов алюминия:

2 Al(OH) 3 + H 2 SO 4 → Al 2 (SO 4) 3 + H 2 O.

Уравниваем число атомов серы:

2 Al(OH) 3 + 3 H 2 SO 4 → Al 2 (SO 4) 3 + H 2 O.

Уравниваем число атомов водорода:

2 Al(OH) 3 + 3 H 2 SO 4 → Al 2 (SO 4) 3 + 6 H 2 O.

Подсчитаем число атомов кислорода в левой и правой частях уравнения реакции (проверим правильность подбора коэффициентов).

Уравнение реакции по стадиям записано для того, чтобы показать последовательность в подборе коэффициентов. На практике записывают только одну схему, которую путём подбора коэффициентов превращают в уравнение реакции.

Классификация химических реакций

Химические реакции классифицируют по следующим признакам:

1. по признаку изменения числа и состава исходных веществ и продуктов реакции делятся на следующие типы (или группы) реакций:

− реакции соединения;

− реакции разложения;

− реакции замещения;

− реакции обмена.

2 . по обратимости реакции подразделяются на:

− необратимые реакции;

− обратимые реакции.

3. по тепловому эффекту реакции подразделяются на:

− экзотермические реакции;

− эндотермические реакции.

4. по изменению степеней окисления атомов элементов в ходе химической реакции подразделяются на:

− реакции без изменения степеней окисления;

− реакции с изменением степеней окисления (или окислительно-восстановительные).

Рассмотрим эти типы химических реакций.

1. Классификация по признаку изменения числа и состава исходных веществ и продуктов реакции.

Реакции соединения – это реакции, в результате которых из двух или нескольких веществ образуется одно новое вещество, например:

2H 2 +O 2 → 2H 2 O,



SO 3 + H 2 O → H 2 SO 4 ,

2Cu + O 2 2CuO,

CaO + H 2 O → Ca(OH) 2 ,

4NO 2 + O 2 + 2H 2 O → 4HNO 3 .

Реакции разложения – это реакции, в результате которых из одного сложного вещества образуется два или несколько новых веществ, например:

Ca(HCO 3) 2 CaCO 3 +CO 2 + H 2 O,

Zn(OH) 2 ZnO + H 2 O,

2KNO 3 → 2KNO 2 + O 2 ,

CaCO 3 CaO + CO 2 ,

2AgNO 3 2Ag + 2NO 2 + O 2 ,

4KClO 3 3KClO 4 + KCl.

Реакции замещения – это реакции между простыми и сложными веществами, в результате которых атомы простого вещества замещают атомы сложного вещества (при составлении уравнений реакций этого типа нужно помнить о правилах замещения и пользоваться приложением В1), например:

Fe + CuSO 4 → Cu + FeSO 4 ,

Zn + 2HCl → ZnCl 2 + H 2 ,

Cl 2 + 2KI → I 2 + 2KCl,

Ca + 2H 2 O → Ca(OH) 2 + H 2 .

Реакции обмена – это реакции между двумя сложными веществами, в результате которых два вещества обмениваются своими ионами, образуя два новых вещества. Реакции обмена протекают, если в результате обмена ионами образуются малорастворимые вещества (осадки), газообразные вещества или растворимые малодиссоциирующие вещества (слабые электролиты), например:

ВaCl 2 + Na 2 SO 4 → BaSO 4 ↓ + 2NaCl,

CaCO 3 + 2HCl → CaCl 2 + CO 2 + H 2 O,

HCl + NaOH → NaCl + H 2 O,

(реакция нейтрализации).

При написании ионных уравнений реакций обмена слабые электролиты, труднорастворимые и газообразные вещества записывают в недиссоциированном виде (в виде молекул).

2. Классификация по признаку обратимости

Химические реакции по признаку обратимости подразделяются на обратимые и необратимые.

Обратимые химические реакции – это химические реакции, которые одновременно протекают в двух взаимно противоположных направлениях, в прямом и обратном, например: 2SO 2 + O 2 ↔ 2SO 3 ,

N 2 + 3H 2 ↔ 2NH 3 ,

H 2 + I 2 ↔ 2HI.

Необратимые химические реакции – это химические реакции, которые протекают в одном направлении и завершаются полным превращением исходных реагирующих веществ в конечные вещества (образующиеся продукты уходят из сферы реакции – выпадают в виде осадка, выделяются в виде газа, образуются малодиссоцированные соединения или реакция сопровождается большим выделением энергии), например:

H 2 SO 4 + 2NaOH → Na 2 SO 4 + 2H 2 O,

AgNO 3 + NaBr → AgBr↓ + NaNO 3 ,

Cu + 4HNO 3 → Cu(NO 3) 2 + 2NO 2 +2H 2 O.

3. Классификация по тепловому эффекту реакции

По тепловому эффекту (Q или ∆Н; ∆Н – изменение энтальпии (теплового эффекта реакции)) химические реакции делятся на экзотермические и эндотермические.

Экзотермические химические реакции (∆Н < 0) – это химические реакции, происходящие с выделением теплоты (энергии), теплосодержание системы уменьшается, например: Fe + S → FeS, ∆Н = − 96 кДж,

С + О 2 → СО 2 , ∆Н = − 394 кДж.

Эндотермические химические реакции (∆Н > 0) – это химические реакции, происходящие с поглощением теплоты (энергии), теплосодержание системы возрастает, например: 2Hg → 2Hg + O 2 , ∆Н = + 18 кДж,

CaCO 3 → CaO + CO 3 , ∆Н = + 1200 кДж.

Экзотермическими реакциями являются многие реакции соединения. Эндотермическими реакциями являются многие реакции разложения.

4. Классификация по признаку изменения степеней окисления атомов элементов реагирующих веществ.

Химические реакции по признаку изменения степеней окисления атомов элементов в молекулах в ходе химической реакции делятся на две группы:

1. реакции, которые протекают без изменения степеней окисления атомов элементов, например: .

2. реакции, которые протекают с изменением степеней окисления атомов элементов (окислительно-восстановительные реакции), например:

Реакции соединения с участием простых веществ, а также реакции замещения являются окислительно-восстановительными реакциями.

Реакции разложения, соединения сложных веществ могут происходить как без изменения степеней окисления элементов, так и с изменением степеней окисления атомов элементов.

Реакции обмена всегда происходят без изменения степеней окисления (таблица 2).

Таблица 2 – Примеры реакций различных типов, протекающих с изменением и без изменений степеней окисления

Реакции Без изменения степени окисления Окислительно - восстановительные
Соединения CaO + H 2 O → Ca(OH) 2 Na 2 O + SO 3 → Na 2 SO 4
Разложения t 0 (CuOH) 2 CO 3 2CuO +CO 2 +H 2 O t 0 Cu(OH) 2 CuO + H 2 O
Замещения нет
Обмена BaCl 2 + Na 2 SO 4 →BaSO 4 ↓ + 2NaCl CuO + 2HNO 3 → Cu(NO 3) 2 + H 2 O нет

Классификация химических реакций имеет большое значение в химии. Она помогает обобщать, систематизировать знания о реакциях и устанавливать закономерности их протекания.

Каждую химическую реакцию можно охарактеризовать по нескольким признакам, например: реакция , ∆Н = − 92 кДж

имеет следующие характеристики:

это реакция 1) соединения;

2) экзотермическая;

3) обратимая;

4) окислительно-восстановительная.

Вопросы и задачи для самоконтроля

1) Какой объем займут: а) 1 г водорода; б) 32 г кислорода; в) 14 г азота при нормальных условиях?

2) Вычислить массу в граммах при нормальных условиях:

а) 1 л азота; б) 8 л СО 2 ; в) 1 м 3 кислорода.

3) Какой объем займут 9,03 × 10 23 молекул хлора при нормальных условиях?

4) Сколько молекул содержится в 16 г кислорода?

5) Сколько молей серной кислоты (H 2 SO 4) содержится в 196 г её?

6) Сколько молей карбоната натрия (Na 2 CO 3) содержится в 53 г его?

7) Сколько молей гидроксида натрия (NaOH) содержится в 160 г его?

8) Определить степень окисления хлора в следующих соединениях:

NaClO, NaClO 2 , NaClO 4 , CaCl 2 , Cl 2 O 7 , KClO 3 , HCl.

9) Определить степень окисления фосфора в следующих соединениях:

H 3 PO 4 , PH 3 , KH 2 PO 4 , K 2 HPO 4 , HPO 3 , H 4 P 2 O 7 .

10) Определить степень окисления марганца в следующих соединениях:

MnO, Mn(OH) 4 , KMnO 4 ,K 2 MnO 4 , K 2 MnO 3 .

11) Какие типы химических реакций вам известны? Приведите примеры.

12) Какая реакция: соединения, разложения, замещения или обмена происходит при образовании воды:

а) в результате горения водорода на воздухе;

б) в результате взаимодействия водорода с оксидом меди (II);

в) в результате нагревания гидроксида железа (III);

г) при взаимодействии гидрокарбоната калия с гидроксидом калия.

Часть I

1. Закон Ломоносова-Лавуазье – закон сохранения массы веществ:

2. Уравнения химической реакции – это условная запись химической реакции с помощью химических формул и математических знаков.

3. Химическое уравнение должно соответствовать закону сохранения массы веществ, что достигается расстановкой коэффициентов в уравнении реакции.

4. Что показывает химическое уравнение?
1) Какие вещества вступают в реакцию.
2) Какие вещества образуются в результате.
3) Количественные отношения веществ в реакции, т. е. количества реагирующих и образующихся веществ в реакции.
4) Тип химической реакции.

5. Правила расстановки коэффициентов в схеме химической реакции на примере взаимодействия гидроксида бария и фосфорной кислоты с образованием фосфата бария и воды.
а) Запишите схему реакции, т. е. формулы реагирующих и образующихся веществ:

б) начинайте уравнивать схему реакции с формулы соли (если она имеется). При этом помните, что несколько сложных ионов в составе основания или соли обозначаются скобками, а их число – индексами за скобками:

в) водород уравняйте в предпоследнюю очередь:

г) кислород уравняйте последним – это индикатор верной расстановки коэффициентов.
Перед формулой простого вещества возможна запись дробного коэффициента, после чего уравнение необходимо переписать с удвоенными коэффициентами.

Часть II

1. Составьте уравнения реакций, схемы которых:

2. Напишите уравнения химических реакций:

3. Установите соответствие между схемой и суммой коэффициентов в химической реакции.

4. Установите соответствие между исходными веществами и продуктами реакции.

5. Что показывает уравнение следующей химической реакции:

1) Вступили в реакцию гидроксид меди и соляная кислота;
2) Образовались в результате реакции соль и вода;
3) Коэффициенты перед исходными веществами 1 и 2.

6. С помощью следующей схемы составьте уравнение химической реакции, используя удвоение дробного коэффициента:

7. Уравнение химической реакции:
4P+5O2=2P2O5
показывает количество вещества исходных веществ и продуктов, их массу или объём:
1) фосфора – 4 моль или 124 г;
2) оксида фосфора (V) – 2 моль, 284 г;
3) кислорода – 5 моль или 160 л.

Механика