Найти математическое ожидание суммарного числа. Вероятность и статистика – основные факты

– количество мальчиков среди 10 новорождённых.

Совершенно понятно, что это количество заранее не известно, и в очередном десятке родившихся детей может оказаться:

Либо мальчиков – один и только один из перечисленных вариантов.

И, дабы соблюсти форму, немного физкультуры:

– дальность прыжка в длину (в некоторых единицах) .

Её не в состоянии предугадать даже мастер спорта:)

Тем не менее, ваши гипотезы?

2) Непрерывная случайная величина – принимает все числовые значения из некоторого конечного или бесконечного промежутка.

Примечание : в учебной литературе популярны аббревиатуры ДСВ и НСВ

Сначала разберём дискретную случайную величину, затем – непрерывную .

Закон распределения дискретной случайной величины

– этосоответствие между возможными значениями этой величины и их вероятностями. Чаще всего закон записывают таблицей:

Довольно часто встречается термин ряд распределения , но в некоторых ситуациях он звучит двусмысленно, и поэтому я буду придерживаться «закона».

А теперь очень важный момент : поскольку случайная величина обязательно примет одно из значений , то соответствующие события образуют полную группу и сумма вероятностей их наступления равна единице:

или, если записать свёрнуто:

Так, например, закон распределения вероятностей выпавших на кубике очков имеет следующий вид:

Без комментариев.

Возможно, у вас сложилось впечатление, что дискретная случайная величина может принимать только «хорошие» целые значения. Развеем иллюзию – они могут быть любыми:

Пример 1

Некоторая игра имеет следующий закон распределения выигрыша:

…наверное, вы давно мечтали о таких задачах:) Открою секрет – я тоже. В особенности после того, как завершил работу над теорией поля .

Решение : так как случайная величина может принять только одно из трёх значений, то соответствующие события образуют полную группу , а значит, сумма их вероятностей равна единице:

Разоблачаем «партизана»:

– таким образом, вероятность выигрыша условных единиц составляет 0,4.

Контроль: , в чём и требовалось убедиться.

Ответ :

Не редкость, когда закон распределения требуется составить самостоятельно. Для этого используют классическое определение вероятности , теоремы умножения / сложения вероятностей событий и другие фишки тервера :

Пример 2

В коробке находятся 50 лотерейных билетов, среди которых 12 выигрышных, причём 2 из них выигрывают по 1000 рублей, а остальные – по 100 рублей. Составить закон распределения случайной величины – размера выигрыша, если из коробки наугад извлекается один билет.

Решение : как вы заметили, значения случайной величины принято располагать в порядке их возрастания . Поэтому мы начинаем с самого маленького выигрыша, и именно рублей.

Всего таковых билетов 50 – 12 = 38, и по классическому определению :
– вероятность того, что наудачу извлечённый билет окажется безвыигрышным.

С остальными случаями всё просто. Вероятность выигрыша рублей составляет:

Проверка: – и это особенно приятный момент таких заданий!

Ответ : искомый закон распределения выигрыша:

Следующее задание для самостоятельного решения:

Пример 3

Вероятность того, что стрелок поразит мишень, равна . Составить закон распределения случайной величины – количества попаданий после 2 выстрелов.

…я знал, что вы по нему соскучились:) Вспоминаем теоремы умножения и сложения . Решение и ответ в конце урока.

Закон распределения полностью описывает случайную величину, однако на практике бывает полезно (а иногда и полезнее) знать лишь некоторые её числовые характеристики .

Математическое ожидание дискретной случайной величины

Говоря простым языком, это среднеожидаемое значение при многократном повторении испытаний. Пусть случайная величина принимает значения с вероятностями соответственно. Тогда математическое ожидание данной случайной величины равно сумме произведений всех её значений на соответствующие вероятности:

или в свёрнутом виде:

Вычислим, например, математическое ожидание случайной величины – количества выпавших на игральном кубике очков:

Теперь вспомним нашу гипотетическую игру:

Возникает вопрос: а выгодно ли вообще играть в эту игру? …у кого какие впечатления? Так ведь «навскидку» и не скажешь! Но на этот вопрос можно легко ответить, вычислив математическое ожидание, по сути – средневзвешенный по вероятностям выигрыш:

Таким образом, математическое ожидание данной игры проигрышно .

Не верь впечатлениям – верь цифрам!

Да, здесь можно выиграть 10 и даже 20-30 раз подряд, но на длинной дистанции нас ждёт неминуемое разорение. И я бы не советовал вам играть в такие игры:) Ну, может, только ради развлечения .

Из всего вышесказанного следует, что математическое ожидание – это уже НЕ СЛУЧАЙНАЯ величина.

Творческое задание для самостоятельного исследования:

Пример 4

Мистер Х играет в европейскую рулетку по следующей системе: постоянно ставит 100 рублей на «красное». Составить закон распределения случайной величины – его выигрыша. Вычислить математическое ожидание выигрыша и округлить его до копеек. Сколько в среднем проигрывает игрок с каждой поставленной сотни?

Справка : европейская рулетка содержит 18 красных, 18 чёрных и 1 зелёный сектор («зеро»). В случае выпадения «красного» игроку выплачивается удвоенная ставка, в противном случае она уходит в доход казино

Существует много других систем игры в рулетку, для которых можно составить свои таблицы вероятностей. Но это тот случай, когда нам не нужны никакие законы распределения и таблицы, ибо доподлинно установлено, что математическое ожидание игрока будет точно таким же. От системы к системе меняется лишь

Решение:

6.1.2 Свойства математического ожидания

1. Математическое ожидание постоянной величины равно самой постоянной.

2. Постоянный множитель можно выносить за знак математического ожидания.

3. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.

Это свойство справедливо для произвольного числа случайных величин.

4. Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых.

Это свойство также справедливо для произвольного числа случайных величин.

Пример: M(X) = 5, M(Y) = 2. Найти математическое ожидание случайной величины Z , применив свойства математического ожидания, если известно, что Z=2X + 3Y .

Решение: M(Z) = M(2X + 3Y) = M(2X) + M(3Y) = 2M(X) + 3M(Y) = 2∙5+3∙2 =

1) математическое ожидание суммы равно сумме математических ожиданий

2) постоянный множитель можно вынести за знак математического ожидания

Пусть производится n независимых испытаний, вероятность появления события А в которых равна р. Тогда имеет место следующая теорема:

Теорема. Математическое ожидание М(Х) числа появления события А в n независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании.

6.1.3 Дисперсия дискретной случайной величины

Математическое ожидание не может полностью характеризовать случайный процесс. Кроме математического ожидания надо ввести величину, которая характеризует отклонение значений случайной величины от математического ожидания.

Это отклонение равно разности между случайной величиной и ее математическим ожиданием. При этом математическое ожидание отклонения равно нулю. Это объясняется тем, что одни возможные отклонения положительны, другие отрицательны, и в результате их взаимного погашения получается ноль.

Дисперсией (рассеиванием) дискретной случайной величины называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания.

На практике подобный способ вычисления дисперсии неудобен, т.к. приводит при большом количестве значений случайной величины к громоздким вычислениям.

Поэтому применяется другой способ.

Теорема. Дисперсия равна разности между математическим ожиданием квадрата случайной величины Х и квадратом ее математического ожидания .

Доказательство. С учетом того, что математическое ожидание М(Х) и квадрат математического ожидания М 2 (Х) – величины постоянные, можно записать:

Пример. Найти дисперсию дискретной случайной величины заданной законом распределения.

Х
Х 2
р 0.2 0.3 0.1 0.4

Решение: .

6.1.4 Свойства дисперсии

1. Дисперсия постоянной величины равна нулю. .

2. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат. .

3. Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин. .

4. Дисперсия разности двух независимых случайных величин равна сумме дисперсий этих величин. .

Теорема. Дисперсия числа появления события А в п независимых испытаний, в каждом из которых вероятность р появления события постоянна, равна произведению числа испытаний на вероятности появления и непоявления события в каждом испытании.

Пример: Найти дисперсию ДСВ Х – числа появлений события А в 2-х независимых испытаниях, если вероятность появления события в этих испытаниях одинаковы и известно, что M(X) = 1,2.

Применим теорему из п. 6.1.2:

M(X) = np

M(X) = 1,2; n = 2. Найдём p :

1,2 = 2∙p

p = 1,2/2

q = 1 – p = 1 – 0,6 = 0,4

Найдём дисперсию по формуле :

D(X) = 2∙0,6∙0,4 = 0,48

6.1.5 Среднее квадратическое отклонение дискретной случайной величины

Средним квадратическим отклонением случайной величины Х называется квадратный корень из дисперсии.

(25)

Теорема. Среднее квадратичное отклонение суммы конечного числа взаимно независимых случайных величин равно квадратному корню из суммы квадратов средних квадратических отклонений этих величин.

6.1.6 Мода и медиана дискретной случайной величины

Модой M o ДСВ называется наиболее вероятное значение случайной величины (т.е. значение, которое имеет наибольшую вероятность)

Медианой M e ДСВ называется значение случайной величины, которое делит ряд распределения пополам. Если число значений случайной величины чётное, то медиана находится как среднее арифметическое двух средних значений.

Пример: Найти моду и медиану ДСВ Х :

X
p 0.2 0.3 0.1 0.4

M e = = 5,5

Ход работы

1. Ознакомиться с теоретической частью данной работы (лекции, учебник).

2. Выполнить задание по своему варианту.

3. Составить отчет по работе.

4. Защитить работу.

2. Цель работы.

3. Ход работы.

4. Решение своего варианта.


6.4 Варианты заданий для самостоятельной работы

Вариант №1

1. Найти математическое ожидание, дисперсию, среднее квадратическое отклонение, моду и медиану ДСВ X, заданной законом распределения.

X
P 0.1 0.6 0.2 0.1

2. Найти математическое ожидание случайной величины Z, если известны математические ожидания X и Y: M(Х)=6, M(Y)=4, Z=5X+3Y.

3. Найти дисперсию ДСВ Х – числа появлений события А в двух независимых испытаниях, если вероятности появления событий в этих испытаниях одинаковы и известно, что М (Х) = 1.

4. Дан перечень возможных значений дискретной случайной величины Х : x 1 = 1, x 2 = 2, x 3 = 5, а также известны математические ожидания этой величины и её квадрата: , . Найти вероятности , , , соответствующие возможным значениям , , и составить закон распределения ДСВ.

Вариант №2

X
P 0.3 0.1 0.2 0.4

2. Найти математическое ожидание случайной величины Z, если известны математические ожидания X и Y: M(Х)=5, M(Y)=8, Z=6X+2Y.

3. Найти дисперсию ДСВ Х – числа появлений события А в трёх независимых испытаниях, если вероятности появления событий в этих испытаниях одинаковы и известно, что М (Х) = 0,9.

4. Дан перечень возможных значений дискретной случайной величины Х: x 1 = 1, x 2 = 2, x 3 = 4, x 4 = 10, а также известны математические ожидания этой величины и её квадрата: , . Найти вероятности , , , соответствующие возможным значениям , , и составить закон распределения ДСВ.

Вариант №3

1. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение ДСВ X, заданной законом распределения.

X
P 0.5 0.1 0.2 0.3

2. Найти математическое ожидание случайной величины Z, если известны математические ожидания X и Y: M(Х)=3, M(Y)=4, Z=4X+2Y.

3. Найти дисперсию ДСВ Х – числа появлений события А в четырёх независимых испытаниях, если вероятности появления событий в этих испытаниях одинаковы и известно, что М (х) = 1,2.

Закон распределения полностью характеризует случайную величину. Однако часто закон распределения неизвестен и приходится ограничиваться меньшими сведениями. Иногда даже выгоднее пользоваться числами, которые описывают случайную величину суммарно, такие числа называют числовыми характеристиками случайной величины. К числу важных числовых характеристик относится математическое ожидание.

Математическое ожидание, как будет показано далее, приближенно равно среднему значению случайной величины. Для решения многих задач достаточно знать математическое ожидание. Например, если известно, что математическое ожидание числа выбиваемых очков у первого стрелка больше, чем у второго, то первый стрелок в среднем выбивает больше очков, чем второй, и, следовательно, стреляет лучше второго.

Определение4.1: Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности.

Пусть случайная величина X может принимать только значения x 1, x 2, … x n , вероятности которых соответственно равны p 1, p 2, … p n . Тогда математическое ожидание M (X ) случайной величины X определяется равенством

M (X) = x 1 p 1 + x 2 p 2 + …+ x n p n .

Eсли дискретная случайная величина X принимает счетное множество возможных значений, то

,

причем математическое ожидание существует, если ряд в правой части равенства сходится абсолютно.

Пример. Найти математическое ожидание числа появлений события A в одном испытании, если вероятность события A равна p .

Решение: Случайная величина X – число появлений события A имеет распределение Бернулли, поэтому

Таким образом, математическое ожидание числа появлений события в одном испытании равно вероятности этого события .

Вероятностный смысл математического ожидания

Пусть произведено n испытаний, в которых случайная величина X приняла m 1 раз значение x 1 , m 2 раз значение x 2 ,…, m k раз значение x k , причем m 1 + m 2 + …+ m k = n . Тогда сумма всех значений, принятых X , равна x 1 m 1 + x 2 m 2 + …+ x k m k .

Среднее арифметическое всех значений, принятых случайной величиной, будет

Отношение m i / n - относительная частота W i значения x i приближенно равно вероятности появления события p i , где , поэтому

Вероятностный смысл полученного результата таков: математическое ожидание приближенно равно (тем точнее, чем больше число испытаний) среднему арифметическому наблюдаемых значений случайной величины .

Свойства математического ожидания

Свойство1: Математическое ожидание постоянной величины равно самой постоянной

Свойство2: Постоянный множитель можно выносить за знак математического ожидания

Определение4.2: Две случайные величины называются независимыми , если закон распределения одной из них не зависит от того, какие возможные значения приняла другая величина. В противном случае случайные величины зависимы .

Определение4.3: Несколько случайных величин называют взаимно независимыми , если законы распределения любого числа из них не зависят от того, какие возможные значения приняли остальные величины.

Свойство3: Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.

Следствие: Математическое ожидание произведения нескольких взаимно независимых случайных величин равно произведению их математических ожиданий.

Свойство4: Математическое ожидание суммы двух случайных величин равно сумме их математических ожиданий.

Следствие: Математическое ожидание суммы нескольких случайных величин равно сумме их математических ожиданий.

Пример. Вычислим математическое ожидание биномиальной случайной величины X – числа наступления события A в n опытах.

Решение: Общее число X появлений события A в этих испытаниях складывается из чисел появлений события в отдельных испытаниях. Введем случайные величины X i – число появлений события в i -ом испытании, которые являются Бернуллиевскими случайными величинами с математическим ожиданием , где . По свойству математического ожидания имеем

Таким образом, математическое ожидание биномиального распределения с параметрами n и p равно произведению np .

Пример. Вероятность попадания в цель при стрельбе из орудия p = 0,6. Найти математическое ожидание общего числа попаданий, если будет произведено 10 выстрелов.

Решение: Попадание при каждом выстреле не зависит от исходов других выстрелов, поэтому рассматриваемые события независимы и,следовательно, искомое математическое ожидание

Математическим ожиданием (средним значением) случайной величины X , заданной на дискретном вероятностном пространстве, называется число m =M[X]=∑x i p i , если ряд сходится абсолютно.

Назначение сервиса . С помощью сервиса в онлайн режиме вычисляются математическое ожидание, дисперсия и среднеквадратическое отклонение (см. пример). Кроме этого строится график функции распределения F(X) .

Свойства математического ожидания случайной величины

  1. Математическое ожидание постоянной величины равно ей самой: M[C]=C , C – постоянная;
  2. M=C M[X]
  3. Математическое ожидание суммы случайных величин равно сумме их математических ожиданий: M=M[X]+M[Y]
  4. Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий: M=M[X] M[Y] , если X и Y независимы.

Свойства дисперсии

  1. Дисперсия постоянной величины равна нулю: D(c)=0.
  2. Постоянный множитель можно вынести из-под знака дисперсии, возведя его в квадрат: D(k*X)= k 2 D(X).
  3. Если случайные величины X и Y независимы, то дисперсия суммы равна сумме дисперсий: D(X+Y)=D(X)+D(Y).
  4. Если случайные величины X и Y зависимы: D(X+Y)=DX+DY+2(X-M[X])(Y-M[Y])
  5. Для дисперсии справедлива вычислительная формула:
    D(X)=M(X 2)-(M(X)) 2

Пример . Известны математические ожидания и дисперсии двух независимых случайных величин X и Y: M(x)=8 , M(Y)=7 , D(X)=9 , D(Y)=6 . Найти математическое ожидание и дисперсию случайное величины Z=9X-8Y+7 .
Решение. Исходя из свойств математического ожидания: M(Z) = M(9X-8Y+7) = 9*M(X) - 8*M(Y) + M(7) = 9*8 - 8*7 + 7 = 23.
Исходя из свойств дисперсии: D(Z) = D(9X-8Y+7) = D(9X) - D(8Y) + D(7) = 9^2D(X) - 8^2D(Y) + 0 = 81*9 - 64*6 = 345

Алгоритм вычисления математического ожидания

Свойства дискретных случайных величин: все их значения можно перенумеровать натуральными числами; каждому значению сопоставить отличную от нуля вероятность.
  1. Поочередно умножаем пары: x i на p i .
  2. Складываем произведение каждой пары x i p i .
    Например, для n = 4: m = ∑x i p i = x 1 p 1 + x 2 p 2 + x 3 p 3 + x 4 p 4
Функция распределения дискретной случайной величины ступенчатая, она возрастает скачком в тех точках, вероятности которых положительны.

Пример №1 .

x i 1 3 4 7 9
p i 0.1 0.2 0.1 0.3 0.3

Математическое ожидание находим по формуле m = ∑x i p i .
Математическое ожидание M[X] .
M[x] = 1*0.1 + 3*0.2 + 4*0.1 + 7*0.3 + 9*0.3 = 5.9
Дисперсию находим по формуле d = ∑x 2 i p i - M[x] 2 .
Дисперсия D[X] .
D[X] = 1 2 *0.1 + 3 2 *0.2 + 4 2 *0.1 + 7 2 *0.3 + 9 2 *0.3 - 5.9 2 = 7.69
Среднее квадратическое отклонение σ(x) .
σ = sqrt(D[X]) = sqrt(7.69) = 2.78

Пример №2 . Дискретная случайная величина имеет следующий ряд распределения:

Х -10 -5 0 5 10
р а 0,32 2a 0,41 0,03
Найти величину a , математическое ожидание и среднее квадратическое отклонение этой случайной величины.

Решение. Величину a находим из соотношения: Σp i = 1
Σp i = a + 0,32 + 2 a + 0,41 + 0,03 = 0,76 + 3 a = 1
0.76 + 3 a = 1 или 0.24=3 a , откуда a = 0.08

Пример №3 . Определить закон распределения дискретной случайной величины, если известна её дисперсия, причем х 1 x 1 =6; x 2 =9; x 3 =x; x 4 =15
p 1 =0,3; p 2 =0,3; p 3 =0,1; p 4 =0,3
d(x)=12,96

Решение.
Здесь надо составить формулу нахождения дисперсии d(x) :
d(x) = x 1 2 p 1 +x 2 2 p 2 +x 3 2 p 3 +x 4 2 p 4 -m(x) 2
где матожидание m(x)=x 1 p 1 +x 2 p 2 +x 3 p 3 +x 4 p 4
Для наших данных
m(x)=6*0,3+9*0,3+x 3 *0,1+15*0,3=9+0.1x 3
12,96 = 6 2 0,3+9 2 0,3+x 3 2 0,1+15 2 0,3-(9+0.1x 3) 2
или -9/100 (x 2 -20x+96)=0
Соответственно надо найти корни уравнения, причем их будет два.
x 3 =8, x 3 =12
Выбираем тот, который удовлетворяет условию х 1 x 3 =12

Закон распределения дискретной случайной величины
x 1 =6; x 2 =9; x 3 =12; x 4 =15
p 1 =0,3; p 2 =0,3; p 3 =0,1; p 4 =0,3

Каждая, отдельно взятая величина полностью определяется своей функцией распределения. Также, для решения практических задач хватает знать несколько числовых характеристик, благодаря которым появляется возможность представить основные особенности случайной величины в краткой форме.

К таким величинам относят в первую очередь математическое ожидание и дисперсия .

Математическое ожидание — среднее значение случайной величины в теории вероятностей. Обозначается как .

Самым простым способом математическое ожидание случайной величины Х(w) , находят как интеграл Лебега по отношению к вероятностной мере Р исходном вероятностном пространстве

Еще найти математическое ожидание величины можно как интеграл Лебега от х по распределению вероятностей Р Х величины X :

где - множество всех возможных значений X .

Математическое ожидание функций от случайной величины X находится через распределение Р Х . Например , если X - случайная величина со значениями в и f(x) - однозначная борелевская функция Х , то:

Если F(x) - функция распределения X , то математическое ожидание представимо интегралом Лебега - Стилтьеса (или Римана - Стилтьеса):

при этом интегрируемость X в смысле (* ) соответствует конечности интеграла

В конкретных случаях, если X имеет дискретное распределение с вероятными значениями х k , k=1, 2 , . , и вероятностями , то

если X имеет абсолютно непрерывное распределение с плотностью вероятности р(х) , то

при этом существование математического ожидания равносильно абсолютной сходимости соответствующего ряда или интеграла.

Свойства математического ожидания случайной величины.

  • Математическое ожидание постоянной величины равно этой величине:

C - постоянная;

  • M=C.M[X]
  • Математическое ожидание суммы случайно взятых величин равно сумме их математических ожиданий:

  • Математическое ожидание произведения независимых случайно взятых величин = произведению их математических ожиданий:

M=M[X]+M[Y]

если X и Y независимы.

если сходится ряд:

Алгоритм вычисления математического ожидания.

Свойства дискретных случайных величин: все их значения можно перенумеровать натуральными числами; каждому значению приравнять отличную от нуля вероятность.

1. По очереди перемножаем пары: x i на p i .

2. Складываем произведение каждой пары x i p i .

Напрмер , для n = 4 :

Функция распределения дискретной случайной величины ступенчатая, она возрастает скачком в тех точках, вероятности которых имеют положительный знак.

Пример: Найти математическое ожидание по формуле.

Формулы