Как правильно составлять уравнения химических реакций. Как уравнивать химические уравнения? Символы в химических уравнениях

Инструкции для балансировки химических уравнений:
  • Введите уравнение химической реакции и нажмите «Equalize».

    химическое решение ионных уравнений

    Ответ на этот вопрос будет показан ниже

  • Всегда используйте верхний край первого символа в имени химического элемента и строчный регистр для второго символа. Например: Fe, Au, Co, C, O, N, F. Сравнить: Co-кобальт и окись углерода
  • Используйте {-} или e, чтобы сбалансировать полуреакцию окислительно-восстановительного процесса
  • Чтобы отметить ионные заряды, используйте вкладки: {+3} или {3+} или {3}.

    Пример: Fe {3 +} +. I {-} = Fe {2 +} + I2

  • В случае сложных соединений с повторяющимися группами заменяются неизменные части в формуле реагента.
    Например, уравнение C6H5C2H5 + O2 = C6H5OH + CO2 + H2O не будет сбалансировано,
    но если C6H5 заменяется на X, все будет PhC2H5 + O2 = PhOH + CO2 + H2O

Примеры идеальных уравнений химического равновесия: Примеры уравнений химических реагентов (предлагается все уравнение): Свяжитесь с нами о ваших опытах с уравнениями химического баланса.

Химические уравнения сегодня сбалансированы

Используя этот сайт, вы соглашаетесь с Условиями использования и Политикой конфиденциальности.
© 2018 webqc.org Все права защищены

1. ЭТАП ОКИСЛЕНИЯ

второй

ЭТАП ОКИСЛЕНИЯ — МЕРА
«ЭЛЕКТРОННАЯ ДЕФОРМАЦИЯ»
ОБОЛОЧКИ ОБРАЗОВАНИЯ
ХИМИЧЕСКИЕ СООБЩЕНИЯ.
Показывает, как и сколько
Электронная оболочка под
проектирование химических связей.

3. Строгое определение скорости окисления:

УРОВЕНЬ ОКИСЛЕНИЯ — ЧТО НЕОБХОДИМО
ХИМИЧЕСКИЙ АТОМНЫЙ ЗАРЯД
ЭЛЕМЕНТЫ В КОМПЛЕКСНЫХ МАТЕРИАЛАХ,
ОПРЕДЕЛЕНЫ ИЗ
ПРАВИЛА, КОТОРЫЕ
(КОМПЛЕКСНЫЙ МАТЕРИАЛ)
Ионы.

четвёртая

ПРАВИЛА И ИСКЛЮЧЕНИЯ:

первый
второй
третий
четвёртая
Степень окисления свободных атомов и
Атомы, которые образуют простые вещества, одинаковы
Ничего!
В водороде в соединениях с неметаллами
степень окисления равна +1, с металлами -1;
Кислород имеет степень окисления в комплексе
вещество составляет -2, за исключением соединений с
фтор (+1, +2) и пероксиды (H2O2) -1;
Общее состояние окисления всех
химические элементы в соединении
ZERO !!!

пятые

Стойкие состояния окисления:

Металлы группы IA (Li, Na, K,
Rb, Cs, Fr) +1
Металлы IIA (Be, Mg, Ca,
Sr, Ba) +2
Металлы IIIA (Al) +3
Nekovine v
электроотрицательная часть

шестые

Как сделать ионные уравнения. Задача 31 об унифицированном государственном экзамене по химии

Двоичные соединения

Двоичные вызовы
соединения, молекулы
которые составляют их
атомы двух химических веществ
элементы.

7. Номенклатура бинарных соединений:

первый
второй
третий
Вызвать «отрицательную часть»
молекул (таблица ниже
слайд)
Назовите «положительную часть»
молекулы (элемент родительного падежа
случай)
В скобках в римских цифрах
указывает степень окисления
(если переменная)

восьмых

Элемент в отрицательной части
Имя подключения
скорость
окисление
водород (только с металлами)
гидрид
-1
углерод
карбид
-4
азот
нитрид
-3
Кислород (исключая пероксиды в форме
H2O2)
оксид
-2
фтор
фторид
-1
хлор
хлорид
-1
кремний
кремний
-4
фосфор
фосфид
-3
сера
сульфид
-2
бром
бромид
-1
йод
йодид
-1

девятую

Пример двоичного имени соединения:

ФОРМУЛИРОВКА ДНЯ ФОРМУЛИРОВАНИЯ — SO2
В положительной части мы видим, что элемент c
переменная скорость окисления — сера
(необходимо будет определить степень окисления), v
отрицательная часть состояния окисления
Неметалл всегда постоянный (см.
таблицу).
первый
Определить степень окисления серы;
второй
Введите имя ссылки из
отрицательная часть: оксид
сера (IV)

English РусскийРули

Ионные уравнения реакции.

Эта услуга призвана приравнивать химические реакции. При создании сервиса мы старались учитывать преимущества и недостатки существующих сервисов, которые приравнивают химические реакции — многоуровневый алгоритм выравнивания использует несколько различных математических методов.

Служба была проверена на 10 000 химических реакций, и все они были приравнены. Со временем мы улучшим обслуживание, если это необходимо.
Химические элементы необходимо вводить, поскольку они записываются в периодическую таблицу. с большой буквы. (CuSO4 является правильным, cuso4 является неправильным).

Внимание, пожалуйста! Это все уравнивание реакций , не «Найти неорганические реакции «

Примеры химических реакций для выравнивания (реакции еще не приравнены):

H2 + O2 = H2O
Al + S = Al2S3
AgCl + Na2S = Ag2S + NaCl
ZrCl4 = ZrCl3 + ZrCl2 + ZrCl + Cl2
NaOH + Cl2 + Br2 = NaBrO3 + NaCl + H2O
NaCl + H2SO4 + KMnO4 = Cl2 + MnSO4 + Na2SO4 + K2SO4 + H2O
4 3 + KMnO4 + HNO3 = K2Cr2O7 + CO2 + KNO3 + Mn (NO3) 2 + H2O
4 3 + KMnO4 + H2SO4 = K2Cr2O7 + CO2 + KNO3 + MnSO4 + K2SO4 + H2O

За помощь на работе

Метод ионно-ионного равновесия

Будем более подробно описывать электронный и ионный равновесный метод.

Чтобы сформировать такое уравнение реакции восстановления окисления, необходимо следующее:

Запишите схему реакции, определите ионы (молекулы), участвующие в процессе окисления и восстановления. Найти ионные потоки вместо состояний окисления соответствующих атомов (продукты реакции определяются опытом или на основе эталонных данных).

2. Создает ионные уравнения для каждой половины реакции. Когда этот высокоэлектролит должен регистрироваться в виде ионов и слабых электролитов, осадков и газов — в форме молекул и учитывать количество атомов кислорода в исходных материалах и продуктах реакции:

а) если ион-источник (молекула) содержит несколько атомов кислорода в качестве продукта реакции, избыточные атомы кислорода в кислой среде связаны с ионами водорода для образования молекул воды; в нейтральных и щелочных средах кислород реагирует с молекулами воды с образованием ионов гидроксида;

б) если ионный источник (молекула) содержит меньше атома кислорода, чем получаемое соединение, недостаток компенсируется их атомами в кислотных и нейтральных растворах из-за водной молекулы и щелочных растворов — из-за ионов гидроксида.

На основании закона о сохранении массы и закона электронейтральности

(общее количество затрат на продукты реакции должно быть таким же, как общее

следует количество затрат на исходные материалы) при выводе уравнений

Рассмотрим баланс вещества и баланс затрат.

Например, рассмотрим реакцию, которая возникает во время взаимодействия нитрата калия и перманганата калия в кислой среде

KNO2 + KMnO4 + H2S04 → KNO3 + MnS04 + K2SO4 + H2O

или в ионной форме:

K + + NO2- + K + + MnO4- + 2H + + SO42- → K + + NO3- + Mn2 + + SO42- + 2K + + SO42- + H2O

Схема реакции показывает, что ионы (молекулы) участвуют в восстановлении окисления:

NO2- + MnO4- + 2H + → NO3- + Mn2 + + H2O

Мы составляем электронные ионные уравнения для каждой полуреакции

Кислород, который отсутствует в левой части, заменяет молекулы воды, в то время как одна молекула воды необходима для поддержания баланса вещества, а в правой части — 2H +

NO2- + H2O → NO3- + 2H +,

Если выполняется равенство нагрузок на правой и левой сторонах уравнения, схема принимает следующий вид:

(NO2- + H2O) — — 2e- = (NO3- + 2H +) +

б) Ионы MnO4 в кислой среде восстанавливаются до ионов Mn2 + (желтоватый цвет изменяется до бесцветного):

избыток кислорода в левой части уравнения должен быть связан с ионами водорода, поскольку реакцию проводят в кислой среде, чтобы поддерживать баланс вещества, 8Н + и правый — 4Н2О

MnO4- + 8H + → Mn2 + 4H2O;

Учитывая необходимость баланса затрат, предыдущая схема должна быть дополнена

(MnO4- + 8H +) + 7 + 5e- = (Mn2 + + 4H2O) +2

Чтобы составить полное ионное уравнение окислительно-восстановительных процессов этой реакции, необходимо обобщить полученные полуреакции. Так как число электронов, даваемых восстановителем, должно быть равно числу электронов, принимаемых окислителем, умножить уравнение реакции на уменьшение на 2 и окисление на 5, затем добавить

5 NO2- + H2O — 2e- = NO3- + 2H + — процесс окисления

2 MnO4- + 8H + + 5e- = Mn2 + + 4H2O-процесс восстановления

5NO2- + 5H20 + 2MnO4- + 16H + = 5NO3- + 10H + + 2Mn2 + + 8H20

Найти уравнения химических реакций

Давайте упростим (уменьшим подобные термины)

5NO2- + 2MnO4- + 6H + = 5NO3- + 2Mn2 + + 3H2O

4. На основе коэффициентов полного ионного уравнения коэффициенты определялись в молекулярном уравнении реакции с учетом ионов, которые не менялись до и после реакции (K + и SO42-)

5KNO2 + 2KMnO4 + 3H2S04 = 5KNO3 + 2MnS04 + K2S04 + 3H2O

Таким образом, используя уравнение электронного иона, мы сразу получаем все коэффициенты.

Электронно-ионный метод более эффективно отражает процессы, происходящие во время реакции.

Раствор не содержит ионов N + 3, Mn + 7, N + 5 («гипотетические» ионы), но есть ионы NO2-, MnO4- и NO3- (истинные ионы).

Prejšnja1234567Naslednja

Электролиты в растворах образуют ионы, поэтому их часто используют для реагирования на ряд реакций ионных уравнений.

В зависимости от диссоциации в растворах могут быть две версии:

1) Общие вещества — сильные электролиты, которые быстро растворяются в воде и полностью диссоциируют.

2) Одно или несколько из полученных веществ — газ, осадок или образование воды (слабый электролит).

К примеру,

K2CO3 + 2HCl = 2KCl + CO2 + H2O.

В ионной форме:

2K + + CO32- + 2H + + 2Cl- = 2K + + 2Cl- + CO2 + H2O.

Молекула воды регистрируется в неполной форме, потому что

Уравновешивание химических реакций

это слабый электролит. Неполярные соединения СО2 растворяют в воде в воде и удаляют из реакционной сферы. Те же реакционные частицы уменьшаются и Укороченное ионное уравнение:

CO32- + 2H + = CO2 + H2O.

В реакции, к которой поступает любая кислота, реакция будет происходить путем образования молекулы воды.

Ионное уравнение относится к молекулярному, а не к одной реакции, а к целой группе подобных взаимодействий.

Поэтому качественные реакции на различные ионы настолько распространены.

Химическим уравнением можно назвать визуализацию химической реакции с помощью знаков математики и химических формул. Такое действие является отображением какой-либо реакции, в процессе которой появляются новые вещества.

Химические задания: виды

Химическое уравнение - это последовательность химических реакций. Они основываются на законе сохранения массы каких-либо веществ. Существует всего два вида реакций:

  • Соединения - к ним относятся (происходит замена атомов сложных элементов атомами простых реагентов), обмена (замещение составными частями двух сложных веществ), нейтрализации (реакция кислот с основаниями, образование соли и воды).
  • Разложения - образование двух и более сложных или простых веществ из одного сложного, но состав их более простой.

Химические реакции также можно разделить на типы: экзотермические (происходят с выделением теплоты) и эндотермические (поглощение теплоты).

Этот вопрос волнует многих учащихся. Мы предлегаем несколько простых советов, которые подскажут, как научиться решать химические уравнения:

  • Желание понять и освоить. Нельзя отступать от своей цели.
  • Теоретические знания. Без них невозможно составить даже элементарную формулу соединения.
  • Правильность записи химической задачи - даже малейшая ошибка в условии сведет к нулю все ваши усилия в ее решении.

Желательно, чтобы сам процесс решения химических уравнений был для вас увлекательным. Тогда химические уравнения (как решать их и какие моменты нужно запомнить, мы разберем в этой статье) перестанут быть для вас проблемными.

Задачи, которые решаются с использованием уравнений химических реакций

К таким задачам относятся:

  • Нахождение массы компонента по данной массе другого реагента.
  • Задания по комбинации «масса-моль».
  • Расчеты по комбинации «объем-моль».
  • Примеры с применением термина «избыток».
  • Расчеты с использованием реагентов, один из которых не лишен примесей.
  • Задачи на распад результата реакции и на производственные потери.
  • Задачи на поиск формулы.
  • Задачи, в которых реагенты предоставлены в виде растворов.
  • Задачи, содержащие смеси.

Каждый из этих видов задач включает в себя несколько подтипов, которые обычно подробно рассматриваются еще на первых школьных уроках химии.

Химические уравнения: как решать

Существует алгоритм, который помогает справиться с практически любым заданием из этой непростой науки. Чтобы понять, как правильно решать химические уравнения, нужно придерживаться определенной закономерности:

  • При записи уравнения реакции не забывать расставлять коэффициенты.
  • Определение способа, с помощью которого можно найти неизвестные данные.
  • Правильность применения в выбранной формуле пропорций или использование понятия «количество вещества».
  • Обратить внимание на единицы измерений.

В конце важно обязательно проверить задачу. В процессе решения вы могли допустить элементарную ошибку, которая повлияла на результат решения.

Основные правила составления химических уравнений

Если придерживаться правильной последовательности, то вопрос о том, что такое химические уравнения, как решать их, не будет вас волновать:

  • Формулы веществ, которые вступают в реакцию (реагенты), записываются в левой части уравнения.
  • Формулы веществ, которые образуются в результате реакции, записываются уже в правой части уравнения.

Составление уравнения реакции основывается на законе сохранения массы веществ. Следовательно, обе части уравнения должны быть равны, т. е. с одинаковым числом атомов. Достичь этого можно при условии правильной расстановки коэффициентов перед формулами веществ.

Расстановка коэффициентов в химическом уравнении

Алгоритм расстановки коэффициентов таков:

  • Подсчет в левой и правой части уравнения атомов каждого элемента.
  • Определение меняющегося количества атомов у элемента. Также нужно найти Н.О.К.
  • Получение коэффициентов достигается путем деления Н.О.К. на индексы. Обязательно проставить данные цифры перед формулами.
  • Следующим шагом является пересчет количества атомов. Иногда возникает необходимость в повторении действия.

Уравнивание частей химической реакции происходит с помощью коэффициентов. Расчет индексов производится через валентность.

Для успешного составления и решения химических уравнений необходимо учитывать физические свойства вещества, такие как объем, плотность, масса. Также нужно знать состояние реагирующей системы (концентрация, температура, давление), разбираться в единицах измерения данных величин.

Для понимания вопроса о том, что такое химические уравнения, как решать их, необходимо использование основных законов и понятий этой науки. Чтобы успешно вычислять подобные задачи, необходимо также вспомнить или освоить навыки математических операций, уметь совершать действия с числами. Надеемся, с нашими советами вам будет легче справляться с химическими уравнениями.

Для того, чтобы научится уравнивать химические уравнения, сначала нужно выделять главные моменты и использовать правильный алгоритм.

Ключевые моменты

Выстроить логику процесса несложно. Для этого выделим следующие этапы:

  1. Определение типа реагентов (все реагенты органические, все реагенты неорганические, органические и неорганические реагенты в одной реакции)
  2. Определение типа химической реакции (реакция с изменением степеней окисления компонентов или нет)
  3. Выделение проверочного атома или группы атомов

Примеры

  1. Все компоненты неорганические, без изменения степени окисления, проверочным атомом будет кислород – О (его не затронули никакие взаимодействия:

NaОН + НCl = NaCl + H2O

Посчитаем количество атомов каждого элементов правой и левой части и убедимся, что здесь не требуется расстановка коэффициентов (по умолчанию отсутствие коэффициента – это коэффициент равный 1)

NaOH + H2SO4 = Na2 SO4 + H2O

В данном случае, в правой части уравнения мы видим 2 атома натрия, значит в левой части уравнения нам нужно подставить коэффициент 2 перед соединением, содержащим натрий:

2 NaOH + H2SO4 = Na2 SO4 + H2O

Проверяем по кислороду - О: в левой части 2О из NaОН и 4 из сульфат иона SO4, а в правой 4 из SO4 и 1 в воде. Добавляем 2 перед водой:

2 NaOH + H2SO4 = Na2 SO4 +2 H2O

  1. Все компоненты органические, без изменения степени окисления:

НООС-СOOH + CH3OH = CH3OOC-COOCH3 + H2O (реакция возможна при определенных условиях)

В данном случае мы видим, что в правой части 2 группы атомов CH3, а в левой только одна. Добавляем в левую часть коэффициент 2 перед CH3OH, проверяем по кислороду и добавляем 2 перед водой

НООС-СOOH + 2CH3OH = CH3OOC-COOCH3 + 2H2O

  1. Органический и неорганические компоненты без изменения степеней окисления:

CH3NH2 + H2SO4 = (CH3NH2)2∙SO4

В данной реакции проверочный атом необязателен. В левой части 1 молекула метиламина CH3NH2, а в правой 2. Значит нужен коэффициент 2 перед метиламином.

2CH3NH2 + H2SO4 = (CH3NH2)2∙SO4

  1. Органический компонент, неорганический, изменение степени окисления.

СuO + C2H5OH = Cu + CH3COOH + Н2O

В данном случае необходимо составить электронный баланс, а формулы органических веществ лучше преобразовать в брутто. Проверочным атомом будет кислород – по его количеству видно, что коэффициенты не требуются, электронный баланс подтверждает

CuO + C2H6O = Cu + C2H4O2

2С +2 - 2е = 2С0

C3H8 + O2 = CO2 + H2O

Здесь O не может быть проверочным, так как сам меняет степень окисления. Проверяем по Н.

О2 0 + 2*2 е = 2O-2 (речь идет о кислороде из CO2)

3С (-8/3) - 20е = 3С +4 (в органических окислительно-восстановительных реакциях используют условные дробные степени окисления)

Из электронного баланса видно, что для окисления углерода требуется в 5 раз больше кислорода. Ставим 5 перед O2, также из электронного баланса м должны поставить 3 перед С из СО2, проверим по Н, и поставим 4 перед водой

C3H8 + 5O2 = 3CO2 + 4H2O

  1. Неорганические соединения, изменение степеней окисления.

Na2SO3 + KMnO4 + H2SO4 = Na2SO4 + K2SO4 + Н2О + MnO2

Проверочными будут водороды в воде и кислотные остатки SO4 2- из серной кислоты.

S+4 (из SO3 2-) – 2e = S +6(из Na2SO4)

Mn+7 + 3e = Mn+4

Таким образом нужно поставить 3 перед Na2SO3 и Na2SO4, 2 перед КМnO4 и MNO2.

3Na2SO3 + 2KMnO4 + H2SO4 = 3Na2SO4 + K2SO4 + Н2О +2MnO2

Химическое уравнение представляет собой запись реакции с помощью символов элементов и формул соединений, принимающих в ней участие. Относительные количества реагентов и продуктов, выраженные в молях, указываются численными коэффициентами в полном (сбалансированном) уравнении реакции. Эти коэффициенты иногда называют стехиометрическими коэффициентами. В настоящее время наблюдается все возрастающая тенденция включать в химические уравнения указания физического состояния реагентов и продуктов. Это делается с помощью следующих обозначений: (газ) или означает газообразное состояние, (-жидкость, ) - твердое вещество, (-водный раствор.

Химическое уравнение может быть составлено на основе экспериментально установленного знания реагентов и продуктов изучаемой реакции, а также путем измерения относительных количеств каждого реагента и продукта, которые принимают участие в реакции.

Составление химического уравнения

Составление полного химического уравнения включает следующие четыре стадии.

1-я стадия. Запись реакции в словесном выражении. Например,

2-я стадия. Замена словесных названий формулами реагентов и продуктов.

3-я стадия. Балансировка уравнения (определение его коэффициентов)

Такое уравнение называется сбалансированным или стехиометрическим. Необходимость сбалансировать уравнение диктуется тем, что в любой реакции должен выполняться закон сохранения материи. Применительно к реакции, рассматриваемой нами в качестве примера, это означает, что в ней не может ни образоваться, ни исчезнуть ни один атом магния, углерода или кислорода. Другими словами, число атомов каждого элемента в левой и правой частях химического уравнения должно быть одинаково.

4-я стадия. Указание физического состояния каждого участника реакции.

Типы химических уравнений

Рассмотрим следующее полное уравнение:

Это уравнение описывает всю реакционную систему в целом. Однако рассматриваемую реакцию можно также представить в упрощенном виде при помощи ионного уравнения-.

Это уравнение не включает сведений о сульфат-ионах которые не указаны в нем потому, что они не принимают участия в рассматриваемой реакции. Такие ионы называют ионами-наблюдателями.

Реакция между железом и медью (II) является примером окислительно-восстановительных реакций (см. гл. 10). Ее можно условно разделить на две реакции, одна из которых описывает восстановление, а другая - окисление, протекающие одновременно в общей реакции:

Эти два уравнения называются уравнениями полуреакций. Они особенно часто используются в электрохимии для описания процессов, протекающих на электродах (см. гл. 10).

Интерпретация химических уравнений

Рассмотрим следующее простое стехиометрическое уравнение:

Его можно интерпретировать двумя способами. Во-первых, согласно этому уравнению, один моль молекул водорода реагирует с одним молем молекул брома образуя два моля молекул бромоводорода Такое истолкование химического уравнения иногда называют его молярной интерпретацией.

Однако можно истолковать данное уравнение и так, что в результирующей реакции (см. ниже) одна молекула водорода реагирует с одной молекулой брома образуя две молекулы бромоводорода Подобное истолкование химического уравнения иногда называют его молекулярной интерпретацией.

И молярная, и молекулярная интерпретации одинаково правомочны. Однако было бы совершенно неправильно заключить на основании уравнения рассматриваемой реакции, что одна молекула водорода сталкивается с одной молекулой брома образуя две молекулы бромоводорода Дело в том, что данная реакция, как и большинство других, осуществляется в несколько последовательных стадий. Совокупность всех этих стадий принято называть механизмом реакции (см. гл. 9). В рассматриваемом нами примере реакция включает следующие стадии:

Таким образом, рассматриваемая реакция в действительности представляет собой цепную реакцию, в которой участвуют интермедиаты (промежуточные реагенты), называемые радикалами (см. гл. 9). Механизм рассматриваемой реакции включает еще и другие стадии и побочные реакции. Таким образом, стехиометрическое уравнение указывает только результирующую реакцию. Оно не дает сведений о механизме реакции.

Вычисления с помощью химических уравнений

Химические уравнения являются отправной точкой для самых разнообразных химических расчетов. Здесь и далее в книге дан ряд примеров подобных расчетов.

Вычисление массы реагентов и продуктов. Мы уже знаем, что сбалансированное химическое уравнение указывает относительные молярные количества реагентов и продуктов, участвующих в реакции. Эти количественные данные позволяют вычислять массы реагентов и продуктов.

Вычислим массу хлорида серебра, образующегося при добавлении избыточного количества раствора хлорида натрия к раствору, в котором содержится 0,1 моль серебра в форме ионов

Первой стадией всех подобных расчетов является запись уравнения рассматриваемой реакции: I

Поскольку в реакции используется избыточное количество хлорид-ионов, можно предположить, что все имеющиеся в растворе ионы превращаются в Уравнение реакции показывает, что из одного моля ионов получается один моль Это позволяет вычислить массу образующегося следующим образом:

Следовательно,

Поскольку г/моль, то

Определение концентрации растворов. Вычисления, основанные на стехиометрических уравнениях, лежат в основе количественного химического анализа. В качестве примера рассмотрим определение концентрации раствора по известной массе продукта, образующегося в реакции. Такая разновидность количественного химического анализа называется гравиметрическим анализом.

К раствору нитрата добавлено такое количество раствора иодида калия, которого достаточно, чтобы осадить весь свинец в форме иодида Масса образовавшегося иодида составила 2,305 г. Объем исходного раствора нитрата был равен Требуется определить концентрацию исходного раствора нитрата

Мы уже сталкивались с уравнением рассматриваемой реакции:

Это уравнение показывает, что для получения одного моля иодида необходим один моль нитрата свинца (II). Определим молярное количество образовавшегося в реакции иодида свинца (II). Поскольку

Химия – это наука о веществах, их свойствах и превращениях .
То есть, если с окружающими нас веществами ничего не происходит, то это не относится к химии. Но что значит, «ничего не происходит»? Если в поле нас вдруг застала гроза, и мы все промокли, как говорится «до нитки», то это ли не превращение: ведь одежда была сухой, а стала мокрой.

Если, к примеру взять железный гвоздь, обработать его напильником, а затем собрать железные опилки (Fe ) , то это ли так же не превращение: был гвоздь – стал порошок. Но если после этого собрать прибор и провести получение кислорода (О 2) : нагреть перманганат калия (КМпО 4) и собрать в пробирку кислород, а затем в неё поместить раскалённые «до красна» эти железные опилки, то они вспыхнут ярким пламенем и после сгорания превратятся в порошок бурого цвета. И это так же превращение. Так где же химия? Несмотря на то, что в этих примерах меняется форма (железный гвоздь) и состояние одежды (сухая, мокрая) – это не превращения. Дело в том, что сам по себе гвоздь как был веществом (железо), так им и остался, несмотря на другую свою форму, а воду от дождя как впитала наша одежда, так потом его и испарила в атмосферу. Сама вода не изменилась. Так что же такое превращения с точки зрения химии?

Превращениями с точки зрения химии называются такие явления, которые сопровождаются изменением состава вещества. Возьмём в качестве примера тот же гвоздь. Не важно, какую форму он принял после обработки напильником, но после того как собранные от него железные опилки поместили в атмосферу кислорода - он превратился в оксид железа (Fe 2 O 3 ) . Значит, что-то всё-таки изменилось? Да, изменилось. Было вещество гвоздь, но под воздействием кислорода сформировалось новое вещество – оксид элемента железа. Молекулярное уравнение этого превращения можно отобразить следующими химическими символами:

4Fe + 3O 2 = 2Fe 2 O 3 (1)

Для непосвящённого в химии человека сразу возникают вопросы. Что такое «молекулярное уравнение», что такое Fe? Почему поставлены цифры «4», «3», «2»? Что такое маленькие цифры «2» и «3» в формуле Fe 2 O 3 ? Это значит, наступило время во всём разобраться по порядку.

Знаки химических элементов.

Несмотря на то, что химию начинают изучать в 8-м классе, а некоторые даже раньше, многим известен великий русский химик Д. И. Менделеев. И конечно же, его знаменитая «Периодическая система химических элементов». Иначе, проще, её называют «Таблица Менделеева».

В этой таблице, в соответствующем порядке, располагаются элементы. К настоящему времени их известно около 120. Названия многих элементов нам были известны ещё давно. Это: железо, алюминий, кислород, углерод, золото, кремний. Раньше мы не задумываясь применяли эти слова, отождествляя их с предметами: железный болт, алюминиевая проволока, кислород в атмосфере, золотое кольцо и т.д. и т.д. Но на самом деле все эти вещества (болт, проволока, кольцо) состоят из соответствующих им элементов. Весь парадокс состоит в том, что элемент нельзя потрогать, взять в руки. Как же так? В таблице Менделеева они есть, а взять их нельзя! Да, именно так. Химический элемент – это абстрактное (то есть отвлечённое) понятие, и используется в химии, впрочем как и в других науках, для расчётов, составления уравнений, при решении задач. Каждый элемент отличается от другого тем, что для него характерна своя электронная конфигурация атома. Количество протонов в ядре атома равно количеству электронов в его орбиталях. К примеру, водород – элемент №1. Его атом состоит из 1-го протона и 1-го электрона. Гелий – элемент №2. Его атом состоит из 2-х протонов и 2-х электронов. Литий – элемент №3. Его атом состоит из 3-х протонов и 3-х электронов. Дармштадтий – элемент №110. Его атом состоит из 110-и протонов и 110-и электронов.

Каждый элемент обозначается определённым символом, латинскими буквами, и имеет определённое прочтение в переводе с латинского. Например, водород имеет символ «Н» , читается как «гидрогениум» или «аш». Кремний имеет символ «Si» читается как «силициум». Ртуть имеет символ «Нg» и читается как «гидраргирум». И так далее. Все эти обозначения можно найти в любом учебнике химии за 8-й класс. Для нас сейчас главное уяснить то, что при составлении химических уравнений, необходимо оперировать указанными символами элементов.

Простые и сложные вещества.

Обозначая единичными символами химических элементов различные вещества (Hg ртуть , Fe железо , Cu медь , Zn цинк , Al алюминий ) мы по сути обозначаем простые вещества, то есть вещества, состоящие из атомов одного вида (содержащие одно и то же количество протонов и нейтронов в атоме). Например, если во взаимодействие вступают вещества железо и сера, то уравнение примет следующую форму записи:

Fe + S = FeS (2)

К простым веществам относятся металлы (Ва, К, Na, Mg, Ag), а так же неметаллы (S, P, Si, Cl 2 , N 2 , O 2 , H 2). Причём следует обратить
особое внимание на то, что все металлы обозначаются единичными символами: К, Ва, Са, Аl, V, Mg и т.д., а неметаллы – либо простыми символами: C,S,P или могут иметь различные индексы, которые указывают на их молекулярное строение: H 2 , Сl 2 , О 2 , J 2 , P 4 , S 8 . В дальнейшем это будет иметь очень большое значение при составлении уравнений. Совсем не трудно догадаться, что сложными веществами являются вещества, образованные из атомов разного вида, например,

1). Оксиды:
оксид алюминия Al 2 O 3 ,

оксид натрия Na 2 O,
оксид меди CuO,
оксид цинка ZnO,
оксид титана Ti 2 O 3 ,
угарный газ или оксид углерода (+2) CO,
оксид серы (+6) SO 3

2). Основания:
гидроксид железа (+3) Fe(OH) 3 ,
гидроксид меди Cu(OH) 2 ,
гидроксид калия или щёлочь калия КOH,
гидроксид натрия NaOH.

3). Кислоты:
соляная кислота HCl,
сернистая кислота H 2 SO 3 ,
азотная кислота HNO 3

4). Соли:
тиосульфат натрия Na 2 S 2 O 3 ,
сульфат натрия или глауберова соль Na 2 SO 4 ,
карбонат кальция или известняк СаCO 3,
хлорид меди CuCl 2

5). Органические вещества:
ацетат натрия СН 3 СООNa,
метан СН 4 ,
ацетилен С 2 Н 2 ,
глюкоза С 6 Н 12 О 6

Наконец, после того как мы выяснили структуру различных веществ, можно приступать к составлению химических уравнений.

Химическое уравнение.

Само слово «уравнение» производное от слова «уравнять», т.е. разделить нечто на равные части. В математике уравнения составляют чуть ли не самую сущность этой науки. К примеру, можно привести такое простое уравнение, в котором левая и правая части будут равны «2»:

40: (9 + 11) = (50 х 2) : (80 – 30);

И в химических уравнениях тот же принцип: левая и правая части уравнения должны соответствовать одинаковым количествам атомов, участвующим в них элементов. Или, если приводится ионное уравнение, то в нём число частиц так же должно соответствовать этому требованию. Химическим уравнением называется условная запись химической реакции с помощью химических формул и математических знаков. Химическое уравнение по своей сути отражает ту или иную химическую реакцию, то есть процесс взаимодействия веществ, в процессе которых возникают новые вещества. Например, необходимо написать молекулярное уравнение реакции, в которой принимают участие хлорид бария ВаСl 2 и серная кислота H 2 SO 4. В результате этой реакции образуется нерастворимый осадок – сульфат бария ВаSO 4 и соляная кислота НСl:

ВаСl 2 + H 2 SO 4 = BaSO 4 + 2НСl (3)

Прежде всего необходимо уяснить, что большая цифра «2», стоящая перед веществом НСlназывается коэффициентом, а малые цифры «2», «4» под формулами ВаСl 2 , H 2 SO 4 ,BaSO 4 называются индексами. И коэффициенты и индексы в химических уравнениях выполняют роль множителей, а не слагаемых. Что бы правильно записать химическое уравнение, необходимо расставить коэффициенты в уравнении реакции . Теперь приступим к подсчёту атомов элементов в левой и правой частях уравнения. В левой части уравнения: в веществе ВаСl 2 содержатся 1 атом бария (Ва), 2 атома хлора (Сl). В веществе H 2 SO 4: 2 атома водорода (Н), 1 атом серы (S) и 4 атома кислорода (О) . В правой части уравнения: в веществе BaSO 4 1 атом бария (Ва) 1 атом серы (S) и 4 атома кислорода (О), в веществе НСl: 1 атом водорода (Н) и 1 атом хлора (Сl). Откуда следует, что в правой части уравнения количество атомов водорода и хлора вдвое меньше, чем в левой части. Следовательно, перед формулой НСl в правой части уравнения необходимо поставить коэффициент «2». Если теперь сложить количества атомов элементов, участвующих в данной реакции, и слева и справа, то получим следующий баланс:

В обеих частях уравнения количества атомов элементов, участвующих в реакции, равны, следовательно оно составлено правильно.

Химические уравнение и химические реакции

Как мы уже выяснили, химические уравнения являются отражением химических реакций. Химическими реакциями называются такие явления, в процессе которых происходит превращение одних веществ в другие. Среди их многообразия можно выделить два основных типа:

1). Реакции соединения
2). Реакции разложения.

В подавляющем своём большинстве химические реакции принадлежат к реакциям присоединения, поскольку с отдельно взятым веществом редко могут происходить изменения в его составе, если оно не подвергается воздействиям извне (растворению, нагреванию, действию света). Ничто так не характеризует химическое явление, или реакцию, как изменения, происходящие при взаимодействии двух и более веществ. Такие явления могут осуществляться самопроизвольно и сопровождаться повышением или понижением температуры, световыми эффектами, изменением цвета, образованием осадка, выделением газообразных продуктов, шумом.

Для наглядности приведём несколько уравнений, отражающих процессы реакций соединения, в процессе которых получаются хлорид натрия (NaCl), хлорид цинка (ZnCl 2), осадок хлорида серебра (AgCl), хлорид алюминия (AlCl 3)

Cl 2 + 2Nа = 2NaCl (4)

СuCl 2 + Zn= ZnCl 2 + Сu (5)

AgNO 3 + КCl = AgCl + 2KNO 3 (6)

3HCl + Al(OH) 3 = AlCl 3 + 3Н 2 О (7)

Cреди реакций соединения следует особым образом отметить следующие: замещения (5), обмена (6), и как частный случай реакции обмена – реакцию нейтрализации (7).

К реакциям замещения относятся такие, при осуществлении которой атомы простого вещества замещают атомы одного из элементов в сложном веществе. В примере (5) атомы цинка замещают из раствора СuCl 2 атомы меди, при этом цинк переходит в растворимую соль ZnCl 2 , а медь выделяется из раствора в металлическом состоянии.

К реакциям обмена относятся такие реакции, при которых два сложных вещества обмениваются своими составными частями. В случае реакции (6) растворимые соли AgNO 3 и КCl при сливании обоих растворов образуют нерастворимый осадок соли AgCl. При этом они обмениваются своими составными частями – катионами и анионами. Катионы калия К + присоединяются к анионам NO 3 , а катионы серебра Ag + – к анионам Cl - .

К особому, частному случаю, реакций обмена относится реакция нейтрализации. К реакциям нейтрализации относятся такие реакции, в процессе которых кислоты реагируют с основаниями, в результате образуется соль и вода. В примере (7) соляная кислота HCl , реагируя с основанием Al(OH) 3 образует соль AlCl 3 и воду. При этом катионы алюминия Al 3+ от основания обмениваются с анионами Сl - от кислоты. В итоге происходит нейтрализация соляной кислоты.

К реакциям разложения относятся такие, при котором из одного сложного образуются два и более новых простых или сложных веществ, но более простого состава. В качестве реакций можно привести такие, в процессе которых разлагаются 1). Нитрат калия (КNO 3) с образованием нитрита калия (КNO 2) и кислорода (O 2); 2). Перманганат калия (KMnO 4): образуются манганат калия (К 2 МnO 4), оксид марганца (MnO 2) и кислород (O 2); 3). Карбонат кальция или мрамор ; в процессе образуются углекислый газ (CO 2) и оксид кальция (СаО)

2КNO 3 = 2КNO 2 + O 2 (8)
2KMnO 4 = К 2 МnO 4 + MnO 2 + O 2 (9)
СаCO 3 = CaO + CO 2 (10)

В реакции (8) из сложного вещества образуется одно сложное и одно простое. В реакции (9) – два сложных и одно простое. В реакции (10) – два сложных вещества, но более простых по составу

Разложению подвергаются все классы сложных веществ:

1). Оксиды: оксид серебра 2Ag 2 O = 4Ag + O 2 (11)

2). Гидроксиды: гидроксид железа 2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O (12)

3). Кислоты: серная кислота H 2 SO 4 = SO 3 + H 2 O (13)

4). Соли: карбонат кальция СаCO 3 = СаO + CO 2 (14)

5). Органические вещества: спиртовое брожение глюкозы

С 6 Н 12 О 6 = 2С 2 Н 5 ОH + 2CO 2 (15)

Согласно другой классификации, все химические реакции можно разделить на два типа: реакции, идущие с выделением теплоты, их называют экзотермические, и реакции, идущие с поглощением теплоты – эндотермические. Критерием таких процессов является тепловой эффект реакции. Как правило, к экзотермическим реакциям относятся реакции окисления, т.е. взаимодействия с кислородом, например сгорание метана :

СН 4 + 2O 2 = СО 2 + 2Н 2 О + Q (16)

а к эндотермическим реакциям – реакции разложения, уже приводимые выше (11) – (15). Знак Q в конце уравнения указывает на то, выделяется ли теплота в процессе реакции (+Q) или поглощается (-Q):

СаCO 3 = СаO+CO 2 - Q (17)

Можно так же рассматривать все химические реакции по типу изменения степени окисления, участвующих в их превращениях элементов. К примеру, в реакции (17) участвующие в ней элементы не меняют свои степени окисления:

Са +2 C +4 O 3 -2 = Са +2 O -2 +C +4 O 2 -2 (18)

А в реакции (16) элементы меняют свои степени окисления:

2Mg 0 + O 2 0 = 2Mg +2 O -2

Реакции такого типа относятся к окислительно-восстановительным . Они будут рассматриваться отдельно. Для составления уравнений по реакциям такого типа необходимо использовать метод полуреакций и применять уравнение электронного баланса.

После приведения различных типов химических реакций, можно приступать к принципу составлений химических уравнений, иначе, подбору коэффициентов в левой и правой их частях.

Механизмы составления химических уравнений.

К какому бы типу ни относилась та или иная химическая реакция, её запись (химическое уравнение) должна соответствовать условию равенства количества атомов до реакции и после реакции.

Существуют такие уравнения (17), которые не требуют уравнивания, т.е. расстановки коэффициентов. Но в большинстве случаях, как в примерах (3), (7), (15), необходимо предпринимать действия, направленные на уравнивание левой и правой частей уравнения. Какими же принципами необходимо руководствоваться в таких случаях? Существует ли какая ни будь система в подборе коэффициентов? Существует, и не одна. К таковым системам относятся:

1). Подбор коэффициентов по заданным формулам.

2). Составление по валентностям реагирующих веществ.

3). Составление по степеням окисления реагирующих веществ.

В первом случае полагается, что нам известны формулы реагирующих веществ как до реакции, так и после. К примеру, дано следующее уравнение:

N 2 + О 2 →N 2 О 3 (19)

Принято считать, что пока не установлено равенство между атомами элементов до реакции и после, знак равенства (=) в уравнении не ставится, а заменяется стрелкой (→). Теперь приступим к собственно уравниванию. В левой части уравнения имеются 2 атома азота (N 2) и два атома кислорода (О 2), а в правой – два атома азота (N 2) и три атома кислорода (О 3). По количеству атомов азота его уравнивать не надо, но по кислороду необходимо добиться равенства, поскольку до реакции их участвовало два атома, а после реакции стало три атома. Составим следующую схему:

до реакции после реакции
О 2 О 3

Определим наименьшее кратное между данными количествами атомов, это будет «6».

О 2 О 3
\ 6 /

Разделим это число в левой части уравнения по кислороду на «2». Получим число «3», поставим его в решаемое уравнение:

N 2 + 3О 2 →N 2 О 3

Так же разделим число «6» для правой части уравнения на «3». Получим число «2», так же поставим его в решаемое уравнение:

N 2 + 3О 2 → 2N 2 О 3

Количества атомов кислорода и в левой и в правой частях уравнения стали равны, соответственно по 6 атомов:

Но количество атомов азота в обеих частях уравнения не будут соответствовать друг другу:

В левой – два атома, в правой – четыре атома. Следовательно, что бы добиться равенства, необходимо удвоить количество азота в левой части уравнения, поставив коэффициент «2»:

Таким образом, равенство по азоту соблюдено и в целом, уравнение примет вид:

2N 2 + 3О 2 → 2N 2 О 3

Теперь в уравнении можно вместо стрелки поставит знак равенства:

2N 2 + 3О 2 = 2N 2 О 3 (20)

Приведём другой пример. Дано следующее уравнение реакции:

Р + Cl 2 → РCl 5

В левой части уравнения имеется 1 атом фосфора (Р) и два атома хлора (Cl 2), а в правой – один атом фосфора (Р) и пять атомов кислорода (Cl 5). По количеству атомов фосфора его уравнивать не надо, но по хлору необходимо добиться равенства, поскольку до реакции их участвовало два атома, а после реакции стало пять атома. Составим следующую схему:

до реакции после реакции
Cl 2 Cl 5

Определим наименьшее кратное между данными количествами атомов, это будет «10».

Cl 2 Cl 5
\ 10 /

Разделим это число в левой части уравнения по хлору на «2». Получим число «5», поставим его в решаемое уравнение:

Р + 5Cl 2 → РCl 5

Так же разделим число «10» для правой части уравнения на «5». Получим число «2», так же поставим его в решаемое уравнение:

Р + 5Cl 2 → 2РCl 5

Количества атомов хлора и в левой и в правой частях уравнения стали равны, соответственно по 10 атомов:

Но количество атомов фосфора в обеих частях уравнения не будут соответствовать друг другу:

Следовательно, что бы добиться равенства, необходимо удвоить количество фосфора в левой части уравнения, поставив коэффициент «2»:

Таким образом, равенство по фосфору соблюдено и в целом, уравнение примет вид:

2Р + 5Cl 2 = 2РCl 5 (21)

При составлении уравнений по валентностям необходимо дать определение валентности и установить значения для наиболее известных элементов. Валентность – это одно из ранее применяемых понятий, в настоящее время в ряде школьных программ не используется. Но при его помощи легче объяснить принципы составления уравнений химических реакций. Под валентностью понимают число химических связей, которые тот или иной атом может образовывать с другим, или другими атомами . Валентность не имеет знака (+ или -) и обозначается римскими цифрами, как правило, над символами химических элементов, например:

Откуда берутся эти значения? Как их применять при составлении химических уравнений? Числовые значения валентностей элементов совпадают с их номером группы Периодической системы химических элементов Д. И. Менделеева (Таблица 1).

Для других элементов значения валентностей могут иметь иные значения, но никогда не больше номера группы, в которой они расположены. Причём для чётных номеров групп (IV и VI) валентности элементов принимают только чётные значения, а для нечётных – могут иметь как чётные, так и нечётные значения (Таблица.2).

Конечно же, в значениях валентностей для некоторых элементов имеются исключения, но в каждом конкретном случае эти моменты обычно оговариваются. Теперь рассмотрим общий принцип составления химических уравнений по заданным валентностям для тех или иных элементов. Чаще всего данный метод приемлем в случае составления уравнений химических реакций соединения простых веществ, например, при взаимодействии с кислородом (реакции окисления ). Допустим, необходимо отобразить реакцию окисления алюминия . Но напомним, что металлы обозначаются единичными атомами (Al), а неметаллы, находящиеся в газообразном состоянии – с индексами «2» - (О 2). Сначала напишем общую схему реакции:

Al + О 2 →AlО

На данном этапе ещё не известно, какое правильное написание должно быть у оксида алюминия. И вот именно на данном этапе нам на помощь придёт знание валентностей элементов. Для алюминия и кислорода проставим их над предполагаемой формулой этого оксида:

III II
Al О

После чего «крест»-на-«крест» у этих символов элементов поставим внизу соответствующие индексы:

III II
Al 2 О 3

Состав химического соединения Al 2 О 3 определён. Дальнейшая схема уравнения реакции примет вид:

Al+ О 2 →Al 2 О 3

Остаётся только уравнять левую и правую его части. Поступим таким же способом, как в случае составления уравнения (19). Количества атомов кислорода уравняем, прибегая к нахождению наименьшего кратного:

до реакции после реакции

О 2 О 3
\ 6 /

Разделим это число в левой части уравнения по кислороду на «2». Получим число «3», поставим его в решаемое уравнение. Так же разделим число «6» для правой части уравнения на «3». Получим число «2», так же поставим его в решаемое уравнение:

Al + 3О 2 → 2Al 2 О 3

Что бы добиться равенства по алюминию, необходимо скорректировать его количество в левой части уравнения, поставив коэффициент «4»:

4Al + 3О 2 → 2Al 2 О 3

Таким образом, равенство по алюминию и кислороду соблюдено и в целом, уравнение примет окончательный вид:

4Al + 3О 2 = 2Al 2 О 3 (22)

Применяя метод валентностей, можно прогнозировать, какое вещество образуется в процессе химической реакции, как будет выглядеть его формула. Допустим, в реакцию соединения вступили азот и водород с соответствующими валентностями III и I. Напишем общую схему реакции:

N 2 + Н 2 → NН

Для азота и водорода проставим валентности над предполагаемой формулой этого соединения:

Как и прежде «крест»-на-«крест» у этих символов элементов поставим внизу соответствующие индексы:

III I
N Н 3

Дальнейшая схема уравнения реакции примет вид:

N 2 + Н 2 → NН 3

Уравнивая уже известным способом, через наименьшее кратное для водорода, равное «6»,получим искомые коэффициенты, и уравнение в целом:

N 2 + 3Н 2 = 2NН 3 (23)

При составлении уравнений по степеням окисления реагирующих веществ необходимо напомнить, что степенью окисления того или иного элемента называется число принятых или отданных в процессе химической реакции электронов. Степень окисления в соединениях в основном, численно совпадает со значениями валентностей элемента. Но отличаются знаком. Например, для водорода валентность равна I, а степень окисления (+1) или (-1). Для кислорода валентность равна II, а степень окисления (-2). Для азота валентности равны I,II,III,IV,V, а степени окисления (-3), (+1), (+2), (+3), (+4), (+5) и т.д. Степени окисления наиболее часто применяемых в уравнениях элементов, приведены в таблице 3.

В случае реакций соединения принцип составления уравнений по степеням окисления такой же, как и при составлении по валентностям. Например, приведём уравнение реакции окисления хлора кислородом, в которой хлор образует соединение со степенью окисления +7. Запишем предполагаемое уравнение:

Cl 2 + О 2 → ClО

Поставим над предполагаемым соединением ClО степени окисления соответствующих атомов:

Как и в предыдущих случаях установим, что искомая формула соединения примет вид:

7 -2
Cl 2 О 7

Уравнение реакции примет следующий вид:

Cl 2 + О 2 → Cl 2 О 7

Уравнивая по кислороду, найдя наименьшее кратное между двумя и семи, равное «14», установим в итоге равенство:

2Cl 2 + 7О 2 = 2Cl 2 О 7 (24)

Несколько иной способ необходимо применять со степенями окисления при составлении реакций обмена, нейтрализации, замещения. В ряде случаев предоставляется затруднительным узнать: какие соединения образуются при взаимодействии сложных веществ?

Как узнать: что получится в процессе реакции?

Действительно, как узнать: какие продукты реакции могут возникнут в ходе конкретной реакции? К примеру, что образуется при взаимодействии нитрата бария и сульфата калия?

Ва(NО 3) 2 + К 2 SO 4 → ?

Может быть ВаК 2 (NО 3) 2 + SO 4 ? Или Ва + NО 3 SO 4 + К 2 ? Или ещё что-то? Конечно же, в процессе этой реакции образуются соединения: ВаSO 4 и КNО 3 . А откуда это известно? И как правильно написать формулы веществ? Начнём с того, что чаще всего упускается из вида: с самого понятия «реакция обмена». Это значит, что при данных реакциях вещества меняются друг с другом составными частями. Поскольку реакции обмена в большинстве своём осуществляются межу основаниями, кислотами или солями, то частями, которыми они будут меняться, являются катионы металлов (Na + , Mg 2+ ,Al 3+ ,Ca 2+ ,Cr 3+), ионов Н + или ОН - , анионов – остатков кислот, (Cl - , NO 3 2- ,SO 3 2- , SO 4 2- , CO 3 2- , PO 4 3-). В общем виде реакцию обмена можно привести в следующей записи:

Kt1An1 + Kt2An1 = Kt1An2 + Kt2An1 (25)

Где Kt1 и Kt2 – катионы металлов (1) и (2), а An1 и An2 – соответствующие им анионы (1) и (2). При этом обязательно надо учитывать, что в соединениях до реакции и после реакции на первом месте всегда устанавливаются катионы, а анионы – на втором. Следовательно, если в реакцию вступит хлорид калия и нитрат серебра , оба в растворённом состоянии

KCl + AgNO 3 →

то в процессе её образуются вещества KNO 3 и AgClи соответствующее уравнение примет вид:

KCl + AgNO 3 =KNO 3 + AgCl (26)

При реакциях нейтрализации протоны от кислот (Н +) будут соединяться с анионами гидроксила (ОН -) с образованием воды (Н 2 О):

НCl + КОН = КCl + Н 2 O (27)

Степени окисления катионов металлов и заряды анионов кислотных остатков указаны в таблице растворимости веществ (кислот, солей и оснований в воде). По горизонтали приведены катионы металлов, а по вертикали – анионы кислотных остатков.

Исходя из этого, при составлении уравнения реакции обмена, необходимо вначале в левой его части установить степени окисления принимающих в этом химическом процессе частиц. Например, требуется написать уравнение взаимодействия между хлоридом кальция и карбонатом натрия.Составим исходную схему этой реакции:

СаCl + NаСО 3 →

Са 2+ Cl - + Nа + СО 3 2- →

Совершив уже известное действие «крест»-на-«крест», определим реальные формулы исходных веществ:

СаCl 2 + Nа 2 СО 3 →

Исходя из принципа обмена катионами и анионами (25), установим предварительные формулы образующихся в ходе реакции веществ:

СаCl 2 + Nа 2 СО 3 → СаСО 3 + NаCl

Над их катионами и анионами проставим соответствующие заряды:

Са 2+ СО 3 2- + Nа + Cl -

Формулы веществ записаны правильно, в соответствии с зарядами катионов и анионов. Составим полное уравнение, уравняв левую и правую его части по натрию и хлору:

СаCl 2 + Nа 2 СО 3 = СаСО 3 + 2NаCl (28)

В качестве другого примера приведём уравнение реакции нейтрализации между гидроксидом бария и ортофосфорной кислотой:

ВаОН + НРО 4 →

Над катионами и анионами проставим соответствующие заряды:

Ва 2+ ОН - + Н + РО 4 3- →

Определим реальные формулы исходных веществ:

Ва(ОН) 2 + Н 3 РО 4 →

Исходя из принципа обмена катионами и анионами (25), установим предварительные формулы образующихся в ходе реакции веществ, учитывая, что при реакции обмена одним из веществ обязательно должна быть вода:

Ва(ОН) 2 + Н 3 РО 4 → Ва 2+ РО 4 3- + Н 2 O

Определим правильную запись формулы соли, образовавшейся в процессе реакции:

Ва(ОН) 2 + Н 3 РО 4 → Ва 3 (РО 4) 2 + Н 2 O

Уравняем левую часть уравнения по барию:

3Ва (ОН) 2 + Н 3 РО 4 → Ва 3 (РО 4) 2 + Н 2 O

Поскольку в правой части уравнения остаток ортофосфорной кислоты взят дважды, (РО 4) 2 , то слева необходимо также удвоить её количество:

3Ва (ОН) 2 + 2Н 3 РО 4 → Ва 3 (РО 4) 2 + Н 2 O

Осталось привести в соответствие количество атомов водорода и кислорода в правой части у воды. Так как слева общее количество атомов водорода равно 12, то справа оно так же должно соответствовать двенадцати, поэтому перед формулой воды необходимо поставить коэффициент «6» (поскольку в молекуле воды уже имеется 2 атома водорода). По кислороду так же соблюдено равенство: слева 14 и справа 14. Итак, уравнение имеет правильную форму записи:

3Ва (ОН) 2 + 2Н 3 РО 4 → Ва 3 (РО 4) 2 + 6Н 2 O (29)

Возможность осуществления химических реакций

Мир состоит из великого множества веществ. Неисчислимо так же количество вариантов химических реакций между ними. Но можем ли мы, написав на бумаге то или иное уравнение утверждать, что ему будет соответствовать химическая реакция? Существует ошибочное мнение, что если правильно расставить коэффициенты в уравнении, то оно будет осуществимо и на практике. Например, если взять раствор серной кислоты и опустить в него цинк , то можно наблюдать процесс выделения водорода:

Zn+ H 2 SO 4 = ZnSO 4 + H 2 (30)

Но если в этот же раствор опустить медь, то процесс выделения газа наблюдаться не будет. Реакция не осуществима.

Cu+ H 2 SO 4 ≠

В случае, если будет взята концентрированная серная кислота, она будет реагировать с медью:

Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2Н 2 O (31)

В реакции (23) между газами азотом и водородом наблюдается термодинамическое равновесие, т.е. сколько молекул аммиака NН 3 образуется в единицу времени, столько же их и распадётся обратно на азот и водород. Смещение химического равновесия можно добиться повышением давления и понижением температуры

N 2 + 3Н 2 = 2NН 3

Если взять раствор гидроксида калия и прилить к нему раствор сульфата натрия , то никаких изменений наблюдаться не будет, реакция будет не осуществима:

КОН + Na 2 SO 4 ≠

Раствор хлорида натрия при взаимодействии с бромом не будет образовывать бром, несмотря на то, что данная реакция может быть отнесена к реакции замещения:

NаCl + Br 2 ≠

В чём же причины таких несоответствий? Дело в том, что оказывается недостаточно только правильно определять формулы соединений , необходимо знать специфику взаимодействия металлов с кислотами, умело пользоваться таблицей растворимости веществ, знать правила замещения в ряду активности металлов и галогенов. В этой статье излагаются только самые основные принципы как расставить коэффициенты в уравнениях реакций , как написать молекулярные уравнения , как определить состав химического соединения.

Химия, как наука, чрезвычайно разнообразна и многогранна. В приведённой статье отражена лишь малая часть процессов, происходящих в реальном мире. Не рассмотрены типы , термохимические уравнения, электролиз, процессы органического синтеза и многое, многое другое. Но об этом в следующих статьях.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Справочник