Тригонометрические функции как решать. Решение тригонометрических уравнений

Требует знания основных формул тригонометрии - сумму квадратов синуса и косинуса, выражение тангенса через синус и косинус и другие. Для тех, кто их забыл или не знает рекомендуем прочитать статью " ".
Итак, основные тригонометрические формулы мы знаем, пришло время использовать их на практике. Решение тригонометрических уравнений при правильном подходе – довольно увлекательное занятие, как, например, собрать кубик Рубика.

Исходя из самого названия видно, что тригонометрическое уравнение – это уравнение, в котором неизвестное находится под знаком тригонометрической функции.
Существуют так называемые простейшие тригонометрические уравнения. Вот как они выглядят: sinх = а, cos x = a, tg x = a. Рассмотрим, как решить такие тригонометрические уравнения , для наглядности будем использовать уже знакомый тригонометрический круг.

sinх = а

cos x = a

tg x = a

cot x = a

Любое тригонометрическое уравнение решается в два этапа: приводим уравнение к простейшему виду и далее решаем его, как простейшее тригонометрическое уравнение.
Существует 7 основных методов, с помощью которых решаются тригонометрические уравнения.

  1. Метод замены переменной и подстановки

  2. Решить уравнение 2cos 2 (x + /6) – 3sin( /3 – x) +1 = 0

    Используя формулы приведения получим:

    2cos 2 (x + /6) – 3cos(x + /6) +1 = 0

    Заменим cos(x + /6) на y для упрощения и получаем обычное квадратное уравнение:

    2y 2 – 3y + 1 + 0

    Корни которого y 1 = 1, y 2 = 1/2

    Теперь идем в обратном порядке

    Подставляем найденные значения y и получаем два варианта ответа:

  3. Решение тригонометрических уравнений через разложение на множители

  4. Как решить уравнение sin x + cos x = 1 ?

    Перенесем все влево, чтобы справа остался 0:

    sin x + cos x – 1 = 0

    Воспользуемся вышерассмотренными тождествами для упрощения уравнения:

    sin x - 2 sin 2 (x/2) = 0

    Делаем разложение на множители:

    2sin(x/2) * cos(x/2) - 2 sin 2 (x/2) = 0

    2sin(x/2) * = 0

    Получаем два уравнения

  5. Приведение к однородному уравнению

  6. Уравнение является однородным относительно синуса и косинуса, если все его члены относительно синуса и косинуса одной и той же степени одного и того же угла. Для решения однородного уравнения, поступают следующим образом:

    а) переносят все его члены в левую часть;

    б) выносят все общие множители за скобки;

    в) приравнивают все множители и скобки к 0;

    г) в скобках получено однородное уравнение меньшей степени, его в свою очередь делят на синус или косинус в старшей степени;

    д) решают полученное уравнение относительно tg.

    Решить уравнение 3sin 2 x + 4 sin x cos x + 5 cos 2 x = 2

    Воспользуемся формулой sin 2 x + cos 2 x = 1 и избавимся от открытой двойки справа:

    3sin 2 x + 4 sin x cos x + 5 cos x = 2sin 2 x + 2cos 2 x

    sin 2 x + 4 sin x cos x + 3 cos 2 x = 0

    Делим на cos x:

    tg 2 x + 4 tg x + 3 = 0

    Заменяем tg x на y и получаем квадратное уравнение:

    y 2 + 4y +3 = 0, корни которого y 1 =1, y 2 = 3

    Отсюда находим два решения исходного уравнения:

    x 2 = arctg 3 + k

  7. Решение уравнений, через переход к половинному углу

  8. Решить уравнение 3sin x – 5cos x = 7

    Переходим к x/2:

    6sin(x/2) * cos(x/2) – 5cos 2 (x/2) + 5sin 2 (x/2) = 7sin 2 (x/2) + 7cos 2 (x/2)

    Пререносим все влево:

    2sin 2 (x/2) – 6sin(x/2) * cos(x/2) + 12cos 2 (x/2) = 0

    Делим на cos(x/2):

    tg 2 (x/2) – 3tg(x/2) + 6 = 0

  9. Введение вспомогательного угла

  10. Для рассмотрения возьмем уравнение вида: a sin x + b cos x = c ,

    где a, b, c – некоторые произвольные коэффициенты, а x – неизвестное.

    Обе части уравнения разделим на :

    Теперь коэффициенты уравнения согласно тригонометрическим формулам обладают свойствами sin и cos, а именно: их модуль не более 1 и сумма квадратов = 1. Обозначим их соответственно как cos и sin , где – это и есть так называемый вспомогательный угол. Тогда уравнение примет вид:

    cos * sin x + sin * cos x = С

    или sin(x + ) = C

    Решением этого простейшего тригонометрического уравнения будет

    х = (-1) k * arcsin С - + k, где

    Следует отметить, что обозначения cos и sin взаимозаменяемые.

    Решить уравнение sin 3x – cos 3x = 1

    В этом уравнении коэффициенты:

    а = , b = -1, поэтому делим обе части на = 2

Чтобы успешно решать тригонометрические уравнения удобно пользоваться методом сведения к ранее решенным задачам. Давайте разберемся, в чем суть этого метода?

В любой предлагаемой задаче вам необходимо увидеть уже решенную ранее задачу, а затем с помощью последовательных равносильных преобразований попытаться свести данную вам задачу к более простой.

Так, при решении тригонометрических уравнений обычно составляют некоторую конечную последовательность равносильных уравнений, последним звеном которой является уравнение с очевидным решением. Только важно помнить, что если навыки решения простейших тригонометрических уравнений не сформированы, то решение более сложных уравнений будет затруднено и малоэффективно.

Кроме того, решая тригонометрические уравнения, никогда не стоит забывать о возможности существования нескольких способов решения.

Пример 1. Найти количество корней уравнения cos x = -1/2 на промежутке .

Решение:

I способ. Изобразим графики функций y = cos x и y = -1/2 и найдем количество их общих точек на промежутке (рис. 1).

Так как графики функций имеют две общие точки на промежутке , то уравнение содержит два корня на данном промежутке.

II способ. С помощью тригонометрического круга (рис. 2) выясним количество точек, принадлежащих промежутку , в которых cos x = -1/2. По рисунку видно, что уравнение имеет два корня.

III способ. Воспользовавшись формулой корней тригонометрического уравнения, решим уравнение cos x = -1/2.

x = ± arccos (-1/2) + 2πk, k – целое число (k € Z);

x = ± (π – arccos 1/2) + 2πk, k – целое число (k € Z);

x = ± (π – π/3) + 2πk, k – целое число (k € Z);

x = ± 2π/3 + 2πk, k – целое число (k € Z).

Промежутку принадлежат корни 2π/3 и -2π/3 + 2π, k – целое число. Таким образом, уравнение имеет два корня на заданном промежутке.

Ответ: 2 .

В дальнейшем тригонометрические уравнения будут решаться одним из предложенных способов, что во многих случаях не исключает применения и остальных способов.

Пример 2. Найти количество решений уравнения tg (x + π/4) = 1 на промежутке [-2π; 2π].

Решение:

Воспользовавшись формулой корней тригонометрического уравнения, получим:

x + π/4 = arctg 1 + πk, k – целое число (k € Z);

x + π/4 = π/4 + πk, k – целое число (k € Z);

x = πk, k – целое число (k € Z);

Промежутку [-2π; 2π] принадлежат числа -2π; -π; 0; π; 2π. Итак, уравнение имеет пять корней на заданном промежутке.

Ответ: 5.

Пример 3. Найти количество корней уравнения cos 2 x + sin x · cos x = 1 на промежутке [-π; π].

Решение:

Так как 1 = sin 2 x + cos 2 x (основное тригонометрическое тождество), то исходное уравнение принимает вид:

cos 2 x + sin x · cos x = sin 2 x + cos 2 x;

sin 2 x – sin x · cos x = 0;

sin x(sin x – cos x) = 0. Произведение равно нулю, а значит хотя бы один из множителей должен быть равен нулю, поэтому:

sin x = 0 или sin x – cos x = 0.

Так как значение переменной, при которых cos x = 0, не являются корнями второго уравнения (синус и косинус одного и того же числа не могут одновременно быть равными нулю), то разделим обе части второго уравнения на cos x:

sin x = 0 или sin x / cos x - 1 = 0.

Во втором уравнении воспользуемся тем, что tg x = sin x / cos x, тогда:

sin x = 0 или tg x = 1. С помощью формул имеем:

x = πk или x = π/4 + πk, k – целое число (k € Z).

Из первой серии корней промежутку [-π; π] принадлежат числа -π; 0; π. Из второй серии: (π/4 – π) и π/4.

Таким образом, пять корней исходного уравнения принадлежат промежутку [-π; π].

Ответ: 5.

Пример 4. Найти сумму корней уравнения tg 2 x + сtg 2 x + 3tg x + 3сtgx + 4 = 0 на промежутке [-π; 1,1π].

Решение:

Перепишем уравнение в следующем виде:

tg 2 x + сtg 2 x + 3(tg x + сtgx) + 4 = 0 и сделаем замену.

Пусть tg x + сtgx = a. Обе части равенства возведем в квадрат:

(tg x + сtg x) 2 = a 2 . Раскроем скобки:

tg 2 x + 2tg x · сtgx + сtg 2 x = a 2 .

Так как tg x · сtgx = 1, то tg 2 x + 2 + сtg 2 x = a 2 , а значит

tg 2 x + сtg 2 x = a 2 – 2.

Теперь исходное уравнение имеет вид:

a 2 – 2 + 3a + 4 = 0;

a 2 + 3a + 2 = 0. С помощью теоремы Виета получаем, что a = -1 или a = -2.

Сделаем обратную замену, имеем:

tg x + сtgx = -1 или tg x + сtgx = -2. Решим полученные уравнения.

tg x + 1/tgx = -1 или tg x + 1/tgx = -2.

По свойству двух взаимно обратных чисел определяем, что первое уравнение не имеет корней, а из второго уравнения имеем:

tg x = -1, т.е. x = -π/4 + πk, k – целое число (k € Z).

Промежутку [-π; 1,1π] принадлежат корни: -π/4; -π/4 + π. Их сумма:

-π/4 + (-π/4 + π) = -π/2 + π = π/2.

Ответ: π/2.

Пример 5. Найти среднее арифметическое корней уравнения sin 3x + sin x = sin 2x на промежутке [-π; 0,5π].

Решение:

Воспользуемся формулой sin α + sin β = 2sin ((α + β)/2) · cos ((α – β)/2), тогда

sin 3x + sin x = 2sin ((3x + x)/2) · cos ((3x – x)/2) = 2sin 2x · cos x и уравнение принимает вид

2sin 2x · cos x = sin 2x;

2sin 2x · cos x – sin 2x = 0. Вынесем общий множитель sin 2x за скобки

sin 2x(2cos x – 1) = 0. Решим полученное уравнение:

sin 2x = 0 или 2cos x – 1 = 0;

sin 2x = 0 или cos x = 1/2;

2x = πk или x = ±π/3 + 2πk, k – целое число (k € Z).

Таким образом, имеем корни

x = πk/2, x = π/3 + 2πk, x = -π/3 + 2πk, k – целое число (k € Z).

Промежутку [-π; 0,5π] принадлежат корни -π; -π/2; 0; π/2 (из первой серии корней); π/3 (из второй серии); -π/3 (из третьей серии). Их среднее арифметическое равно:

(-π – π/2 + 0 + π/2 + π/3 – π/3)/6 = -π/6.

Ответ: -π/6.

Пример 6. Найти количество корней уравнения sin x + cos x = 0 на промежутке [-1,25π; 2π].

Решение:

Данное уравнение является однородным уравнением первой степени. Разделим обе его части на cosx (значение переменной, при которых cos x = 0, не являются корнями данного уравнения, так как синус и косинус одного и того же числа не могут одновременно быть равными нулю). Исходное уравнение имеет вид:

x = -π/4 + πk, k – целое число (k € Z).

Промежутку [-1,25π; 2π] принадлежат корни -π/4; (-π/4 + π); и (-π/4 + 2π).

Таким образом, заданному промежутку принадлежат три корня уравнения.

Ответ: 3.

Научитесь делать самое главное – четко представлять план решения задачи, и тогда любое тригонометрическое уравнение будет вам по плечу.

Остались вопросы? Не знаете, как решать тригонометрические уравнения?
Чтобы получить помощь репетитора – зарегистрируйтесь .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Концепция решения тригонометрических уравнений.

  • Для решения тригонометрического уравнения преобразуйте его в одно или несколько основных тригонометрических уравнений. Решение тригонометрического уравнения в конечном итоге сводится к решению четырех основных тригонометрических уравнений.
  • Решение основных тригонометрических уравнений.

    • Существуют 4 вида основных тригонометрических уравнений:
    • sin x = a; cos x = a
    • tg x = a; ctg x = a
    • Решение основных тригонометрических уравнений подразумевает рассмотрение различных положений «х» на единичной окружности, а также использование таблицы преобразования (или калькулятора).
    • Пример 1. sin x = 0,866. Используя таблицу преобразования (или калькулятор), вы получите ответ: х = π/3. Единичная окружность дает еще один ответ: 2π/3. Запомните: все тригонометрические функции являются периодическими, то есть их значения повторяются. Например, периодичность sin x и cos x равна 2πn, а периодичность tg x и ctg x равна πn. Поэтому ответ записывается следующим образом:
    • x1 = π/3 + 2πn; x2 = 2π/3 + 2πn.
    • Пример 2. соs х = -1/2. Используя таблицу преобразования (или калькулятор), вы получите ответ: х = 2π/3. Единичная окружность дает еще один ответ: -2π/3.
    • x1 = 2π/3 + 2π; х2 = -2π/3 + 2π.
    • Пример 3. tg (x - π/4) = 0.
    • Ответ: х = π/4 + πn.
    • Пример 4. ctg 2x = 1,732.
    • Ответ: х = π/12 + πn.
  • Преобразования, используемые при решении тригонометрических уравнений.

    • Для преобразования тригонометрических уравнений используются алгебраические преобразования (разложение на множители, приведение однородных членов и т.д.) и тригонометрические тождества.
    • Пример 5. Используя тригонометрические тождества, уравнение sin x + sin 2x + sin 3x = 0 преобразуется в уравнение 4cos x*sin (3x/2)*cos (x/2) = 0. Таким образом, нужно решить следующие основные тригонометрические уравнения: cos x = 0; sin (3x/2) = 0; cos (x/2) = 0.
    • Нахождение углов по известным значениям функций.

      • Перед изучением методов решения тригонометрических уравнений вам необходимо научиться находить углы по известным значениям функций. Это можно сделать при помощи таблицы преобразования или калькулятора.
      • Пример: соs х = 0,732. Калькулятор даст ответ х = 42,95 градусов. Единичная окружность даст дополнительные углы, косинус которых также равен 0,732.
    • Отложите решение на единичной окружности.

      • Вы можете отложить решения тригонометрического уравнения на единичной окружности. Решения тригонометрического уравнения на единичной окружности представляют собой вершины правильного многоугольника.
      • Пример: Решения x = π/3 + πn/2 на единичной окружности представляют собой вершины квадрата.
      • Пример: Решения x = π/4 + πn/3 на единичной окружности представляют собой вершины правильного шестиугольника.
    • Методы решения тригонометрических уравнений.

      • Если данное тригонометрическое уравнение содержит только одну тригонометрическую функцию, решите это уравнение как основное тригонометрическое уравнение. Если данное уравнение включает две или более тригонометрические функции, то существуют 2 метода решения такого уравнения (в зависимости от возможности его преобразования).
        • Метод 1.
      • Преобразуйте данное уравнение в уравнение вида: f(x)*g(x)*h(x) = 0, где f(x), g(x), h(x) - основные тригонометрические уравнения.
      • Пример 6. 2cos x + sin 2x = 0. (0 < x < 2π)
      • Решение. Используя формулу двойного угла sin 2x = 2*sin х*соs х, замените sin 2x.
      • 2соs х + 2*sin х*соs х = 2cos х*(sin х + 1) = 0. Теперь решите два основных тригонометрических уравнения: соs х = 0 и (sin х + 1) = 0.
      • Пример 7. cos x + cos 2x + cos 3x = 0. (0 < x < 2π)
      • Решение: Используя тригонометрические тождества, преобразуйте данное уравнение в уравнение вида: cos 2x(2cos x + 1) = 0. Теперь решите два основных тригонометрических уравнения: cos 2x = 0 и (2cos x + 1) = 0.
      • Пример 8. sin x - sin 3x = cos 2x . (0 < x < 2π)
      • Решение: Используя тригонометрические тождества, преобразуйте данное уравнение в уравнение вида: -cos 2x*(2sin x + 1) = 0. Теперь решите два основных тригонометрических уравнения: cos 2x = 0 и (2sin x + 1) = 0.
        • Метод 2.
      • Преобразуйте данное тригонометрическое уравнение в уравнение, содержащее только одну тригонометрическую функцию. Затем замените эту тригонометрическую функцию на некоторую неизвестную, например, t (sin x = t; cos x = t; cos 2x = t, tg x = t; tg (x/2) = t и т.д.).
      • Пример 9. 3sin^2 x - 2cos^2 x = 4sin x + 7 (0 < x < 2π).
      • Решение. В данном уравнении замените (cos^2 x) на (1 - sin^2 x) (согласно тождеству). Преобразованное уравнение имеет вид:
      • 3sin^2 x - 2 + 2sin^2 x - 4sin x - 7 = 0. Замените sin х на t. Теперь уравнение имеет вид: 5t^2 - 4t - 9 = 0. Это квадратное уравнение, имеющее два корня: t1 = -1 и t2 = 9/5. Второй корень t2 не удовлетворяет области значений функции (-1 < sin x < 1). Теперь решите: t = sin х = -1; х = 3π/2.
      • Пример 10. tg x + 2 tg^2 x = ctg x + 2
      • Решение. Замените tg x на t. Перепишите исходное уравнение в следующем виде: (2t + 1)(t^2 - 1) = 0. Теперь найдите t, а затем найдите х для t = tg х.
    • Особые тригонометрические уравнения.

      • Есть несколько особых тригонометрических уравнений, которые требуют конкретных преобразований. Примеры:
      • a*sin x+ b*cos x = c ; a(sin x + cos x) + b*cos x*sin x = c;
      • a*sin^2 x + b*sin x*cos x + c*cos^2 x = 0
    • Периодичность тригонометрических функций.

      • Как упоминалось ранее, все тригонометрические функции являются периодическими, то есть их значения повторяются через определенный период. Примеры:
        • Период функции f(x) = sin x равен 2π.
        • Период функции f(x) = tg x равен π.
        • Период функции f(x) = sin 2x равен π.
        • Период функции f(x) = cos (x/2) равен 4π.
      • Если период указан в задаче, вычислите значение «х» в пределах этого периода.
      • Примечание: решение тригонометрических уравнений – непростая задача, которая часто приводит к ошибкам. Поэтому тщательно проверяйте ответы. Для этого можно использовать графический калькулятор, чтобы построить график данного уравнения R(х) = 0. В таких случаях решения будут представлены в виде десятичных дробей (то есть π заменяется на 3,14).
  • Урок и презентация на тему: "Решение простейших тригонометрических уравнений"

    Дополнительные материалы
    Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

    Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
    Решаем задачи по геометрии. Интерактивные задания на построение в пространстве
    Программная среда "1С: Математический конструктор 6.1"

    Что будем изучать:
    1. Что такое тригонометрические уравнения?

    3. Два основных метода решения тригонометрических уравнений.
    4. Однородные тригонометрические уравнения.
    5. Примеры.

    Что такое тригонометрические уравнения?

    Ребята, мы с вами изучили уже арксинуса, арккосинус, арктангенс и арккотангенс. Теперь давайте посмотрим на тригонометрические уравнения в общем.

    Тригонометрические уравнения – уравнения в котором переменная содержится под знаком тригонометрической функции.

    Повторим вид решения простейших тригонометрических уравнений:

    1)Если |а|≤ 1, то уравнение cos(x) = a имеет решение:

    X= ± arccos(a) + 2πk

    2) Если |а|≤ 1, то уравнение sin(x) = a имеет решение:

    3) Если |а| > 1, то уравнение sin(x) = a и cos(x) = a не имеют решений 4) Уравнение tg(x)=a имеет решение: x=arctg(a)+ πk

    5) Уравнение ctg(x)=a имеет решение: x=arcctg(a)+ πk

    Для всех формул k- целое число

    Простейшие тригонометрические уравнения имеют вид: Т(kx+m)=a, T- какая либо тригонометрическая функция.

    Пример.

    Решить уравнения: а) sin(3x)= √3/2

    Решение:

    А) Обозначим 3x=t, тогда наше уравнение перепишем в виде:

    Решение этого уравнения будет: t=((-1)^n)arcsin(√3 /2)+ πn.

    Из таблицы значений получаем: t=((-1)^n)×π/3+ πn.

    Вернемся к нашей переменной: 3x =((-1)^n)×π/3+ πn,

    Тогда x= ((-1)^n)×π/9+ πn/3

    Ответ: x= ((-1)^n)×π/9+ πn/3, где n-целое число. (-1)^n – минус один в степени n.

    Ещё примеры тригонометрических уравнений.

    Решить уравнения: а) cos(x/5)=1 б)tg(3x- π/3)= √3

    Решение:

    А) В этот раз перейдем непосредственно к вычислению корней уравнения сразу:

    X/5= ± arccos(1) + 2πk. Тогда x/5= πk => x=5πk

    Ответ: x=5πk, где k – целое число.

    Б) Запишем в виде: 3x- π/3=arctg(√3)+ πk. Мы знаем что: arctg(√3)= π/3

    3x- π/3= π/3+ πk => 3x=2π/3 + πk => x=2π/9 + πk/3

    Ответ: x=2π/9 + πk/3, где k – целое число.

    Решить уравнения: cos(4x)= √2/2. И найти все корни на отрезке .

    Решение:

    Решим в общем виде наше уравнение: 4x= ± arccos(√2/2) + 2πk

    4x= ± π/4 + 2πk;

    X= ± π/16+ πk/2;

    Теперь давайте посмотрим какие корни попадут на наш отрезок. При k При k=0, x= π/16, мы попали в заданный отрезок .
    При к=1, x= π/16+ π/2=9π/16, опять попали.
    При k=2, x= π/16+ π=17π/16, а тут вот уже не попали, а значит при больших k тоже заведомо не будем попадать.

    Ответ: x= π/16, x= 9π/16

    Два основных метода решения.

    Мы рассмотрели простейшие тригонометрические уравнения, но существуют и более сложные. Для их решения применяют метод ввода новой переменной и метод разложения на множители. Давайте рассмотрим примеры.

    Решим уравнение:

    Решение:
    Для решения нашего уравнения воспользуемся методом ввода новой переменной, обозначим: t=tg(x).

    В результате замены получим: t 2 + 2t -1 = 0

    Найдем корни квадратного уравнения: t=-1 и t=1/3

    Тогда tg(x)=-1 и tg(x)=1/3, получили простейшее тригонометрическое уравнение, найдем его корни.

    X=arctg(-1) +πk= -π/4+πk; x=arctg(1/3) + πk.

    Ответ: x= -π/4+πk; x=arctg(1/3) + πk.

    Пример решения уравнения

    Решить уравнений: 2sin 2 (x) + 3 cos(x) = 0

    Решение:

    Воспользуемся тождеством: sin 2 (x) + cos 2 (x)=1

    Наше уравнение примет вид:2-2cos 2 (x) + 3 cos (x) = 0

    2 cos 2 (x) - 3 cos(x) -2 = 0

    Введем замену t=cos(x): 2t 2 -3t - 2 = 0

    Решением нашего квадратного уравнения являются корни: t=2 и t=-1/2

    Тогда cos(x)=2 и cos(x)=-1/2.

    Т.к. косинус не может принимать значения больше единицы, то cos(x)=2 не имеет корней.

    Для cos(x)=-1/2: x= ± arccos(-1/2) + 2πk; x= ±2π/3 + 2πk

    Ответ: x= ±2π/3 + 2πk

    Однородные тригонометрические уравнения.

    Определение: Уравнение вида a sin(x)+b cos(x) называются однородными тригонометрическими уравнениями первой степени.

    Уравнения вида

    однородными тригонометрическими уравнениями второй степени.

    Для решения однородного тригонометрического уравнения первой степени разделим его на cos(x): Делить на косинус нельзя если он равен нулю, давайте убедимся что это не так:
    Пусть cos(x)=0, тогда asin(x)+0=0 => sin(x)=0, но синус и косинус одновременно не равны нулю, получили противоречие, поэтому можно смело делить на ноль.

    Решить уравнение:
    Пример: cos 2 (x) + sin(x) cos(x) = 0

    Решение:

    Вынесем общий множитель: cos(x)(c0s(x) + sin (x)) = 0

    Тогда нам надо решить два уравнения:

    Cos(x)=0 и cos(x)+sin(x)=0

    Cos(x)=0 при x= π/2 + πk;

    Рассмотрим уравнение cos(x)+sin(x)=0 Разделим наше уравнение на cos(x):

    1+tg(x)=0 => tg(x)=-1 => x=arctg(-1) +πk= -π/4+πk

    Ответ: x= π/2 + πk и x= -π/4+πk

    Как решать однородные тригонометрические уравнения второй степени?
    Ребята, придерживайтесь этих правил всегда!

    1. Посмотреть чему равен коэффициент а, если а=0 то тогда наше уравнение примет вид cos(x)(bsin(x)+ccos(x)), пример решения которого на предыдущем слайде

    2. Если a≠0, то нужно поделить обе части уравнения на косинус в квадрате, получим:


    Делаем замену переменной t=tg(x) получаем уравнение:

    Решить пример №:3

    Решить уравнение:
    Решение:

    Разделим обе части уравнения на косинус квадрат:

    Делаем замену переменной t=tg(x): t 2 + 2 t - 3 = 0

    Найдем корни квадратного уравнения: t=-3 и t=1

    Тогда: tg(x)=-3 => x=arctg(-3) + πk=-arctg(3) + πk

    Tg(x)=1 => x= π/4+ πk

    Ответ: x=-arctg(3) + πk и x= π/4+ πk

    Решить пример №:4

    Решить уравнение:

    Решение:
    Преобразуем наше выражение:


    Решать такие уравнение мы умеем: x= - π/4 + 2πk и x=5π/4 + 2πk

    Ответ: x= - π/4 + 2πk и x=5π/4 + 2πk

    Решить пример №:5

    Решить уравнение:

    Решение:
    Преобразуем наше выражение:


    Введем замену tg(2x)=t:2 2 - 5t + 2 = 0

    Решением нашего квадратного уравнения будут корни: t=-2 и t=1/2

    Тогда получаем: tg(2x)=-2 и tg(2x)=1/2
    2x=-arctg(2)+ πk => x=-arctg(2)/2 + πk/2

    2x= arctg(1/2) + πk => x=arctg(1/2)/2+ πk/2

    Ответ: x=-arctg(2)/2 + πk/2 и x=arctg(1/2)/2+ πk/2

    Задачи для самостоятельного решения.

    1) Решить уравнение

    А) sin(7x)= 1/2 б) cos(3x)= √3/2 в) cos(-x) = -1 г) tg(4x) = √3 д) ctg(0.5x) = -1.7

    2) Решить уравнения: sin(3x)= √3/2. И найти все корни на отрезке [π/2; π ].

    3) Решить уравнение: ctg 2 (x) + 2ctg(x) + 1 =0

    4) Решить уравнение: 3 sin 2 (x) + √3sin (x) cos(x) = 0

    5) Решить уравнение:3sin 2 (3x) + 10 sin(3x)cos(3x) + 3 cos 2 (3x) =0

    6)Решить уравнение:cos 2 (2x) -1 - cos(x) =√3/2 -sin 2 (2x)

    На этом уроке мы рассмотрим основные тригонометрические функции, их свойства и графики , а также перечислим основные типы тригонометрических уравнений и систем . Кроме этого, укажем общие решения простейших тригонометрических уравнений и их частные случаи .

    Данный урок поможет Вам подготовиться к одному из типов задания В5 и С1 .

    Подготовка к ЕГЭ по математике

    Эксперимент

    Урок 10. Тригонометрические функции. Тригонометрические уравнения и их системы.

    Теория

    Конспект урока

    Мы с вами уже многократно применяли термин «тригонометрическая функция». Еще на первом уроке этой темы мы определили их с помощью прямоугольного треугольника и единичной тригонометрической окружности. Используя такие способы задания тригонометрических функций, мы уже можем сделать вывод, что для них одному значению аргумента (или угла) соответствует строго одно значение функции, т.е. мы вправе называть синус, косинус, тангенс и котангенс именно функциями.

    На этом уроке самое время попробовать абстрагироваться от рассмотренных ранее способов вычисления значений тригонометрических функций. Сегодня мы перейдем к привычному алгебраическому подходу работы с функциями, мы рассмотрим их свойства и изобразим графики.

    Что касается свойств тригонометрических функций, то особое внимание следует обратить на:

    Область определения и область значений, т.к. для синуса и косинуса есть ограничения по области значений, а для тангенса и котангенса ограничения по области определения;

    Периодичность всех тригонометрических функций, т.к. мы уже отмечали наличие наименьшего ненулевого аргумента, добавление которого не меняет значение функции. Такой аргумент называют периодом функции и обозначают буквой . Для синуса/косинуса и тангенса/котангенса эти периоды различны.

    Рассмотрим функцию:

    1) Область определения ;

    2) Область значений ;

    3) Функция нечетная ;

    Построим график функции . При этом удобно начинать построение с изображения области, которая ограничивает график сверху числом 1 и снизу числом , что связано с областью значений функции. Кроме того, для построения полезно помнить значения синусов нескольких основных табличных углов, например, что Это позволит построить первую полную «волну» графика и потом перерисовывать ее вправо и влево, пользуясь тем, что картинка будет повторяться со смещением на период, т.е. на .

    Теперь рассмотрим функцию:

    Основные свойства этой функции:

    1) Область определения ;

    2) Область значений ;

    3) Функция четная Из этого следует симметричность графика функции относительно оси ординат;

    4) Функция не является монотонной на всей своей области определения;

    Построим график функции . Как и при построении синуса удобно начинать с изображения области, которая ограничивает график сверху числом 1 и снизу числом , что связано с областью значений функции. Также нанесем на график координаты нескольких точек, для чего необходимо помнить значения косинусов нескольких основных табличных углов, например, что С помощью этих точек мы можем построить первую полную «волну» графика и потом перерисовывать ее вправо и влево, пользуясь тем, что картинка будет повторяться со смещением на период, т.е. на .

    Перейдем к функции:

    Основные свойства этой функции:

    1) Область определения кроме , где . Мы уже указывали в предыдущих уроках, что не существует. Это утверждение можно обобщить, учитывая период тангенса;

    2) Область значений , т.е. значения тангенса не ограничены;

    3) Функция нечетная ;

    4) Функция монотонно возрастает в пределах своих так называемых веток тангенса, которые мы сейчас увидим на рисунке;

    5) Функция периодична с периодом

    Построим график функции . При этом удобно начинать построение с изображения вертикальных асимптот графика в точках, которые не входят в область определения, т.е. и т.д. Далее изображаем ветки тангенса внутри каждой из образованных асимптотами полосок, прижимая их к левой асимптоте и к правой. При этом не забываем, что каждая ветка монотонно возрастает. Все ветки изображаем одинаково, т.к. функция имеет период, равный . Это видно по тому, что каждая ветка получается смещением соседней на вдоль оси абсцисс.

    И завершаем рассмотрением функции:

    Основные свойства этой функции:

    1) Область определения кроме , где . По таблице значений тригонометрических функций мы уже знаем, что не существует. Это утверждение можно обобщить, учитывая период котангенса;

    2) Область значений , т.е. значения котангенса не ограничены;

    3) Функция нечетная ;

    4) Функция монотонно убывает в пределах своих веток, которые похожи на ветки тангенса;

    5) Функция периодична с периодом

    Построим график функции . При этом, как и для тангенса, удобно начинать построение с изображения вертикальных асимптот графика в точках, которые не входят в область определения, т.е. и т.д. Далее изображаем ветки котангенса внутри каждой из образованных асимптотами полосок, прижимая их к левой асимптоте и к правой. В этом случае учитываем, что каждая ветка монотонно убывает. Все ветки аналогично тангенсу изображаем одинаково, т.к. функция имеет период, равный .

    Отдельно следует отметить тот факт, что у тригонометрических функций со сложным аргументом может быть нестандартный период. Речь идет о функциях вида:

    У них период равен . И о функциях:

    У них период равен .

    Как видим, для вычисления нового периода стандартный период просто делится на множитель при аргументе. От остальных видоизменений функции он не зависит.

    Подробнее разобраться и понять, откуда берутся эти формулы, вы сможете в уроке про построение и преобразование графиков функций.

    Мы подошли к одной из самых главных частей темы «Тригонометрия», которую мы посвятим решению тригонометрических уравнений. Умение решать такие уравнения важно, например, при описании колебательных процессов в физике. Представим, что вы на спортивной машине проехали несколько кругов на картинге, определить сколько времени вы уже участвуете в гонке в зависимости от положения машины на трассе поможет решение тригонометрического уравнения.

    Запишем простейшее тригонометрическое уравнение:

    Решением такого уравнения являются аргументы, синус которых равен . Но мы уже знаем, что из-за периодичности синуса таких аргументов существует бесконечное множество. Таким образом, решением этого уравнения будут и т.п. То же самое относится и к решению любого другого простейшего тригонометрического уравнения, их будет бесконечное количество.

    Тригонометрические уравнения делятся на несколько основных типов. Отдельно следует остановиться на простейших, т.к. все остальные к ним сводятся. Таких уравнений четыре (по количеству основных тригонометрических функций). Для них известны общие решения, их необходимо запомнить.

    Простейшие тригонометрические уравнения и их общие решения выглядят следующим образом:

    Обратите внимание, что на значения синуса и косинуса необходимо учитывать известные нам ограничения. Если, например, , то уравнение не имеет решений и применять указанную формулу не следует.

    Кроме того, указанные формулы корней содержат параметр в виде произвольного целого числа . В школьной программе это единственный случай, когда решение уравнения без параметра содержит в себе параметр. Это произвольное целое число показывает, что можно выписать бесконечное количество корней любого из указанных уравнений просто подставляя вместо по очереди все целые числа.

    Ознакомиться с подробным получением указанных формул вы можете, повторив главу «Тригонометрические уравнения» в программе алгебры 10 класса.

    Отдельно необходимо обратить внимание на решение частных случаев простейших уравнений с синусом и косинусом. Эти уравнения имеют вид:

    К ним не следует применять формулы нахождения общих решений. Такие уравнения удобнее всего решаются с использованием тригонометрической окружности, что дает более простой результат, чем формулы общих решений.

    Например, решением уравнения является . Попробуйте сами получить этот ответ и решить остальные указанные уравнения.

    Кроме указанного наиболее часто встречающегося типа тригонометрических уравнений существуют еще несколько стандартных. Перечислим их с учетом тех, которые мы уже указали:

    1) Простейшие , например, ;

    2) Частные случаи простейших уравнений , например, ;

    3) Уравнения со сложным аргументом , например, ;

    4) Уравнения, сводящиеся к простейшим путем вынесения общего множителя , например, ;

    5) Уравнения, сводящиеся к простейшим путем преобразования тригонометрических функций , например, ;

    6) Уравнения, сводящиеся к простейшим с помощью замены , например, ;

    7) Однородные уравнения , например, ;

    8) Уравнения, которые решаются с использованием свойств функций , например, . Пусть вас не пугает, что в этом уравнении две переменные, оно при этом решается;

    А также уравнения, которые решаются с использованием различных методов.

    Кроме решения тригонометрических уравнений необходимо уметь решать и их системы.

    Наиболее часто встречаются системы следующих типов:

    1) В которых одно из уравнений степенное , например, ;

    2) Системы из простейших тригонометрических уравнений , например, .

    На сегодняшнем уроке мы рассмотрели основные тригонометрические функции, их свойства и графики. А также познакомились с общими формулами решения простейших тригонометрических уравнений, указали основные типы таких уравнений и их систем.

    В практической части урока мы разберем методы решения тригонометрических уравнений и их систем.

    Вставка 1. Решение частных случаев простейших тригонометрических уравнений .

    Как мы уже говорили в основной части урока частные случаи тригонометрических уравнений с синусом и косинусом вида:

    имеют более простые решения, чем дают формулы общих решений.

    Для этого используется тригонометрическая окружность. Разберем метод их решения на примере уравнения .

    Изобразим на тригонометрической окружности точку, в которой значение косинуса равно нулю, оно же является координатой по оси абсцисс. Как видим, таких точек две. Наша задача указать чему равен угол, который соответствует этим точкам на окружности.

    Начинаем отсчет от положительного направления оси абсцисс (оси косинусов) и при откладывании угла попадаем в первую изображенную точку, т.е. одним из решений будет это значение угла. Но нас же еще устраивает угол, который соответствует второй точке. Как попасть в нее?

    Плотность