Механизм электрофильного замещения в ароматическом кольце. Ароматическое электрофильное замещение

Для реакций электрофильного замещения S E наиболее характерны такие уходящие группы, которые могут существовать в состоянии с незаполненной валентной оболочкой.

Такой группой может быть протон, но его подвижность зависит от кислотности. В насыщенных алканах водород малоподвижен. Более легко замещение водорода происходит в тех положениях, где он достаточо кислый, это, например, -положение к карбонильной группе, или протон при ацетиленовой связи. Важным типом реакции S E является анионное расщепление, включающее разрыв связи углерод-углерод, при этом уходящей группой является углерод. Особенно склонны к реакциям S E металлорганические соединения.

Механизмы алифатического электрофильного замещения

Механизм алифатического S E в отличие от S N изучен недостаточно. Различают четыре типа механизмов S E : S E 1, S E 2 (с тыла), S E 2 (с фронта), S i . Бимолекулярный механизм S E аналогичен S N 2 в том смысле, что новая связь образуется одновременно с разрывом старой. Однако здесь есть существенное различие.

В S N 2 нуклеофил подходит со своей электронной парой и, поскольку электронные пары взаимно отталкиваются, он может подходить только с тыла к уходящей электронной паре. В электрофильном замещении вакантная орбиталь может подходить как с тыла, притягивая на себя электронную пару, так и с фронта. Поэтому теоретически рассматривают два возможных механизма.

S E 2 (с фронта)

S E 2 (с тыла)

Существует третий бимолекулярный механизм S E , когда часть молекулы электрофила способствует отделению уходящей группы, образуя с ней связь. Такой механизм называют S i .

Доказательства: Механизмы S E 2 и S i непросто различить. Всем им соответствует кинетика второго порядка. S i и S E 2(с фронта) протекают с сохранением конфигурации. S E 2(с тыла) протекает с обращением конфигурации. Подтверждением механизма S E 2(с фронта) является то, что электрофильное замещение может протекать у атомов углерода в голове моста.

Мономолекулярный механизм электрофильного замещения S E 1 аналогичен S N 1 и включает две стадии, медленную ионизацию и быструю рекомбинацию.

Доказательства механизма S E 1. Одним из доказательств служит кинетика первого порядка по субстрату. Важным является стереохимическое доказательство в реакции:

Обмен протона на дейтерий происходит с той же скоростью, что и рацемизация, и наблюдается кинетический изотопный эффект. Реакция S N 1 не происходит в голове моста, а S E 1 протекает легко, из чего следует, что карбанион не обязательно должен быть плоским, он может иметь пирамидальное строение.

При проведении электофильного замещения с аллильным субстратом может быть получен продукт перегруппировки:

Процесс такого типа аналогичен S N и может идти двумя путями.

Первый протекает через образование промежуточного аллильного карбаниона:

Второй путь включает электрофильное присоединение по двойной связи с промежуточным образованием карбокатиона и последующим отщеплением электрофуга:

Важнейшие реакции алифатического электрофильнорго замещения

Реакции СН кислот

Если в реакциях электрофильного замещения уходящей группой является водород, отщепляющийся в виде протона, то такие субстраты называются СН-кислотами. Наиболее важные реакции этого типа идущие по механизму S E 1 :

Изтопный обмен водорода

;

Миграция двойных и тройных связей

- Сочетание с солями диазония

В суперкислой среде замещение водорода может идти по механизму S E 2 , через образование карбониевых ионов:

Реакции металлорганических соединений

Основные реакции металлорганических соединений - протодеметаллирование, галогендеметаллирование и переметаллирование

Протодеметаллированием называют реакцию замещения металла в металлорганическом соединении на водород под действием кислот

Галогендеметаллированием называют реакции замещения металла на галоген под действием галогенов или интергалогенов:

Переметаллированием называют реакцию обмена одного металла на другой. В качестве регента может выступать как неорганическая соль металла, так и металлорганическое соединение:

Реакции с гетеролитическим разрывом связи углерод-углерод

Ракции протекающие с расщеплением углерод-углеродной связи, называются анионным расщеплением, часто проходят по механизму S E 1 с промежуточным образованием карбаниона:

Реакции анионного расщепления условно делят на две группы. К первой группе относят процессы, в которых в качнстве уходящей группы выступают карбонильные соединения. Субстратави этой реакции являются гидроксилсодержащие соединения. Наиболее важные реакции этой группы: ретроальдольная реакция, расщепление циангидринов, расщепление третичных алкоголятов. Вторая группа реакций анионного расщепления носит название ацильного расщепления, так как электрофуг отщепляется в виде карбоновой кислоты или ее производного. Субстратами в этой группе являются карбонильные соединения, а процесс начинается с нуклеофильного присоединения основания к карбонильной группе:

Наиболее важные реакции этого типа: расщепление β-кетоэфиров и β-дикетонов (кислотное расщепление под действием оснований), галоформная реакция, реакции декарбоксилирования солей карбоновых кислот.

Наиболее характерны для ароматических углеводородов реакции замещения . При этом в результате реакций не происходит разрушения ароматического секстета электронов. Известны также многочисленные примеры реакций радикального галогенирования и окисления боковых цепей алкилбензолов. Процессы, в которых разрушается стабильная ароматическая система, мало характерны.

IV.1 Электрофильное ароматическое замещение (seAr)

А . Механизм S E Ar (Substitution Electrophilic in Arenes)

Электрофильное замещение в ароматическом ядре является одной из наиболее хорошо изученных и широко распространенных органических реакций. Чаще всего, конечным результатом электрофильного замещения является замещение атома водорода в ароматическом ядре на другой атом или группу атомов:

Реакции электрофильного замещения в ароматическом ядре (как и реакции электрофильногоприсоединения к С=С связи) начинаются с образования -комплекса - электрофильный агент координируется с молекулой бензола за счет -электронной системы последнего:

В бензольном ядре -система, будучи устойчивой (энергия стабилизации; см. раздел II), не нарушается столь легко, как в алкенах. Поэтому соответствующий -комплекс может быть не только зафиксирован с помощью физико-химических методов, но и выделен .(прим.24)

Как правило, стадия образования -комплекса протекает быстро и не лимитирует скорости всего процесса.

Далее ароматическая система нарушается, и возникает ковалентная связь электрофила с атомом углерода бензольного ядра. При этом -комплекс превращается в карбокатион (карбениевый ион), в котором положительный заряд делокализован в диеновой системе, а атакованный электрофилом атом углерода переходит из sp 2 - в sp 3 -гибридное состояние. Такой катион называется -комплексом . Как правило, стадия образования -комплекса является скорость определяющей . Делокализация положительного заряда в -комплексе осуществляется не равномерно между пятью атомами углерода, а за счет 2,4,6-положений бензольного кольца (ср. с аллильным катионом, где положительный заряд распределен между 1,3-положениями):

При электрофильном присоединении к алкенам также сначала образуется -комплекс, переходящий затем в -комплекс, однако дальнейшая судьба -комплекса в случае электрофильных реакций алкенов и аренов различна. -Комплекс, образующийся из алкенов, стабилизируется за счет транс -присоединения нуклеофила; -комплекс, формирующийся из ароматической системы, стабилизируется с регенерацией ароматического секстета -электронов:(прим.25)

Ниже приведен энергетический профиль такой реакции (прим.27) (Е а - энергия активации соответствующей стадии):

Еще раз подчеркнем, что реакции S Е Ar, по результату представляющие собой замещение , на самом деле по механизму являются реакциями присоединения с последующим отщеплением .

Б. Ориентация присоединения в монозамещенных бензолах

При рассмотрении реакций электрофильного замещения в монозамещенных бензолах возникает две проблемы: 1. Новый заместитель может вступать в орто -, мета - илипара -положения, а также замещать уже имеющийся заместитель (последнее, так называемое ипсо-замещение , менее распространено - см. раздел IV.1.Д (нитрование). 2. Скорость замещения может быть больше или меньше скорости замещения в бензоле.

Влияние имеющегося в бензольном кольце заместителя можно объяснить исходя из его электронных эффектов. По этому признаку заместители можно разделить на 3 основных группы:

1. Заместители, ускоряющие реакцию по сравнению с незамещенным бензолом (активирующие ) и направляющие замещение в орто ,- пара - положения.

2. Заместители, замедляющие реакцию (дезактивирующие ) и направляющие замещение в орто,-пара- положения .

3. Заместители, замедляющие реакцию (дезактивирующие ) и направляющие замещение в мета - положения .

Заместители, отмеченные в п.п. 1,2 (орто-,пара-ориентанты ) называются заместителями I-го рода ; отмеченные в п.3 (мета-ориентанты ) - заместителями II-го рода . Ниже приведено отнесение обычно встречающихся заместителей в соотвествие с их электронными эффектами.

Очевидно, что электрофильное замещение будет происходить тем быстрее, чем более электронодонорным является заместитель в ядре , и тем медленнее, чем более электроноакцепторным является заместитель в ядре .

Для объяснения ориентации замещения рассмотрим строение -комплексов при атаке в орто -, мета - и пара -положения монозамещенного бензола (как уже отмечалось, образование -комплексов обычно является скоростьопределяющей стадией электрофильного замещения; cледовательно, легкость их образования должна определять легкость протекания замещения в данное положение):

Если группа Z - донор электронов (неважно, индуктивный или мезомерный), то при орто - или пара -атаке она может принимать непосредственное участие в делокализации положительного заряда в -комплексе (структуры III, IV, VI, VII). Если же Z - акцептор электронов, то указанные структуры будут энергетически невыгодными (из-за наличия частичного положительного заряда на атоме углерода, связанном с электроноакцепторным заместителем) и в этом случае оказывается предпочтительной мета-атака, при которой не возникает таких структур.

Приведенное выше объяснение дано на основании так называемого динамического эффекта , т.е. распределения электронной плотности в реагирующей молекуле. Ориентацию электрофильного замещения в монозамещенных бензолах можно объяснить и с позиции статических электронных эффектов - распределения электронной плотности в нереагирующей молекуле. При рассмотрении смещения электронной плотности по кратным связям можно заметить, что при наличии электронодонорного заместителя более всего повышена электронная плотность в орто - и пара - положениях, а при наличии электроноакцепторного заместителя эти положения наиболее обеднены электронами:

Особый случай представляют собой галогены - будучи заместителями в бензольном ядре, они дезактивируют его в реакциях электрофильного замещения, однако являютсяорто -, пара -ориентантами. Дезактивация (снижение скорости реакции с электрофилами) связана с тем, что, в отличие других группировок с неподеленными электронными парами (таких как -OH, -NH 2 и т.п.), обладающих положительным мезомерным (+М) и отрицательным индуктивным эффектом (-I), для галогенов характерно преобладание индуктивного эффекта над мезомерным (+М< -I).(прим.30)

В то же время, атомы галогенов являются орто,пара -ориентантами, поскольку способны за счет положительного мезомерного эффекта участвовать в делокализации положительного заряда в -комплексе, образующемся при орто - или пара - атаке (структуры IV, VII в приведенной выше схеме), и тем самым снижают энергию его образования.

Если в бензольном ядре имеется не один, а два заместителя, то их ориентирующее действие может совпадать (согласованная ориентация ) или не совпадать (несогласованная ориентация ). В первом случае можно рассчитывать на преимущественное образование каких-то определенных изомеров, а во втором будут получаться сложные смеси.(прим.31)

Ниже приведены некоторые примеры согласованной ориентации двух заместителей; место преимущественного вступления третьего заместителя показано стрелкой.

Спрос на бензол определяется развитием потребляющих его отраслей. Основные области применения бензола - производство этилбензола, кумола и циклогексана и анилина.

Электрофильное замещение, несомненно, составляет самую важную группу реакций ароматических соединений. Вряд ли найдется какой-нибудь другой класс реакций, который так детально, глубоко и всесторонне исследован как с точки зрения механизма, так и с точки зрения применения в органическом синтезе. Именно в области электрофильного ароматического замещения впервые была поставлена проблема связи между структурой и реакционной способностью, которая является основным предметом изучения в физической органической химии. В общем виде этот тип реакций ароматических соединений может быть представлен следующим образом:

ArE + H +

1. Литературный обзор

1.1 Электрофильное замещение в ароматическом ряду

Эти реакции характерны не только для самого бензола, но и вообще для бензельного кольца, где бы оно ни находилось, а также для других ароматических циклов - бензоидных и небензоидных. Реакции электрофильного замещения охватывают широкий круг реакций: нитрование, галогенирование, сульфирование и реакции Фриделя - Крафтса свойственны почти всем ароматическим соединениям; реакции типа нитрозирования и азосочетания присущи лишь системам с повышенной активностью; такие реакции, как десульфирование, изотопный обмен, и многочисленные реакции циклизации, которые с первого взгляда кажутся совсем различными, но которые также оказывается целесообразным отнести к реакциям того же типа.

Электрофильные агенты Е + , хотя наличие заряда не обязательно, т.к. электрофил может быть и незаряженной электронодефицитной частицей (например, SO 3 , Hg(OCOCH 3) 2 и т.п.). Условно их можно разделить на три группы: сильные, средней силы и слабые.

NO 2 + (Ион нитрония, нитроил-катион); комплексы Cl 2 или Br 2 с различными кислотами Льюиса (FeCl 3 , AlBr 3 , AlCl 3 , SbCl 5 и т.д.); H 2 OCl + , H 2 OBr + , RSO 2 + , HSO 3 + , H 2 S 2 O 7 . Сильные электропилы взаимодействуют с соединениями ряда бензола, содержащими как электронодонорные, так и практически любые электроноакцепторные заместители.

Электрофилы средней силы

Комплексы алкилгалогенидов или ацилгалогенидов с кислотами Льюиса (RCl . AlCl 3 , RBr . GaBr 3 , RCOCl . AlCl 3 и др.); комплексы спиртов с сильными кислотами Льюиса и Бренстеда (ROH . BF 3 , ROH . H 3 PO 4 , ROH . HF). Реагируют с бензолом и его производными, содержащими электронодонорные (активирующие) заместители или атомы галогенов (слабые дезактивирующие заместители), но обычно не реагируют с производными бензола, содержащими сильные дезактивирующие электроноакцепторные заместители (NO 2 , SO 3 H, COR,CN и др.).

Слабые электрофилы

Катионы диазония ArN +є N, иминия CH 2 =N+ H 2 , нитрозония NO + (нитрозоил-катион); оксид углерода (IY) СО 2 (один из самых слабых электрофилов). слабые электрофилы взаимодействуют только с производными бензола, содержащими очень сильные электронодонорные заместители (+М)-типа (OH, OR, NH 2 , NR 2 , O- и др.).

1.1.2 Механизм электрофильного ароматического замещения

В настоящее время ароматическое электрофильное замещение рассматривается как двухстадийная реакция присоединения-отщепления с промежуточным образованием аренониевого иона, называемого σ-комплексом


I-Аренониевый ион (

-комплекс), как правило, короткоживущий. Такой механизм получил название S E Ar, т.е. S Е (аренониевый). В этом случае на первой стадии в результате атаки электрофила циклическая ароматическая 6-электронная π-система бензола исчезает и заменяется в интермедиате I на нециклическую 4-электронную сопряженную систему циклогексадиенильного катиона. На второй стадии вновь восстанавливается ароматическая -система за счет отщепления протона.Строение аренониевого иона I изображают различными способами:

Наиболее часто употребляется первая формула. σ-комплекс будет гораздо лучше стабилизироваться донорными заместителями, находящимися в орто- и пара-положениях, чем донорными заместителями в мета-положении.

π -Комплексы

Как известно, арены являются π-основаниями и могут образовывать донорно-акцепторные комплексы со многими электрофильными реагентами.Так, при пропускании сухих газообразных HCl или DCl в раствор бензола, толуола, ксилолов или других полиалкилбензолов в н-гептане при -78 о С удалось обнаружить образование молекулярных комплексов состава 1:1 (Г.Браун, 1952 г.).

Эти комплексы не окрашены, их растворы в ароматических углеводородах неэлектропроводны. При растворении газообразного DCl в бензоле, толуоле, ксилолах, мезитилене, пентаметилбензоле не происходит обмен H на D. Поскольку растворы комплексов не проводят электрический ток, они не являются ионными частицами, т.е. это не аренониевые ионы.

Такие донорно-акцепторные комплексы получили название π-комплексов. Например, кристаллы комплексов бензола с бромом или хлором состава 1:1 согласно рентгеноструктурным данным состоят из цепочек чередующихся молекул π-донора состава (C 6 H 6) и акцептора (Cl 2 ,Br 2), в которых молекула галогена расположена перпендикулярно плоскости кольца вдоль оси, проходящей через его центр симметрии.

σ-комплексы (аренониевые ионы)

При введении в раствор HCl и DCl в алкилбензолах AlCl 3 или AlBr 3 раствор начинает проводить электрический ток. Такие растворы окрашены и их окраска изменяется от желтой до оранжево-красной при переходе от пара-ксилола к пентаметилбензолу. В системах ArH-DCl-AlCl 3 или ArH-DF-BF 3 атомы водорода ароматического кольца уже обмениваются на дейтерий. Электропроводность растворов определенно указывает на образование ионов в тройной системе арен-галогенводород-галогенид алюминия. Строение таких ионов было установлено с помощью ЯМР-спектроскопии на ядрах 1 Н и 13 С в системе ArH-HF (жидк) -BF 3 или ArH-HF-SbF 5 в SO 2 ClF при низкой температуре.

1.1.3 Классификация заместителей

Монозамещенные бензолы С 6 Н 5 Х могут быть более или менее реакционноспособны, чем сам бензол. Если в реакцию ввести эквивалентную смесь С 6 Н 5 Х и С 6 Н 6 , то замещение будет происходить селективно: в первом случае в реакцию будет вступать преимущественно С 6 Н 5 Х, а во втором случае - преимущественно бензол.

В настоящее время заместители делят на три группы с учетом их активирующего или дезактивирующего влияния, а также ориентации замещения в бензольном кольце.

1. Активирующие орто-пара-ориентирующие группы. К ним относятся: NH 2 , NHR, NR 2 , NHAc, OH, OR, OAc, Alk и др.

2. Дезактивирующие орто-пара-ориентирующие группы. Это галогены F, Cl, Br и I.

3. Дезактивирующие мета-ориентирующие группы. Эту группу составляют NO 2 , NO, SO 3 H, SO 2 R, SOR, C(O)R, COOH, COOR, CN, NR 3+ ,CCl 3 и др. Это ориентанты II-го рода.

Естественно, что существуют и группировки атомов промежуточного характера, обусловливающие смешанную ориентацию. Кним, например, относятся: CH 2 NO, CH 2 COCH 3 , CH 2 F, CHCl 2 , CH 2 NO 2 , CH 2 CH 2 NO 2 , CH 2 CH 2 NR 3 + , CH 2 PR 3 + , CH 2 SR 2 + идр.

1.2 Электрофильное замещение в π-избыточных гетероциклах

Фуран, пиррол и тиофен обладают значительной реакционной способностью по отношению к обычным электрофильным реагентам. В этом смысле они напоминают наиболее реакционно-способные производные бензола, такие, как фенолы и анилины. Повышенная чувствительность к электрофильному замещению вызвана несимметричным распределением заряда в этих гетероциклах, в результате чего на углеродных атомах цикла имеется больший отрицательный заряд, чем в бензоле. Фуран обладает несколько большей реакционной способностью, чем пиррол, а наименее реакционноспособен тиофен.

1.2.1 Электрофильное замещение пиррола

В то время как пиррол и его производные не склонны креакциям нуклеофильного присоединения и замещения, они очень чувствительны к электрофильным реагентам, и реакции пирролов с такими реагентами протекают практически исключительно как реакции замещения. Незамещенный пиррол, N- и С-моноалкилпирролы и в наименьшей степени С,С-диалкилпроизводные полимеризуются в сильнокислых средах, поэтому большинство электрофильных реагентов, использующихся в случае производных бензола, не применимы для пиррола и его алкилпроизводных.

Однако при наличии в пиррольном цикле электроноакцепторных групп, препятствующих полимеризации, например, таких, как сложноэфирная, становится возможным использование сильнокислых сред, нитрующих и сульфирующих агентов.


Протонирование

В растворе наблюдается обратимое присоединение протона по всем положениям пиррольного цикла. Наиболее быстро протонируется атом азота, присоединение протона по положению 2 проходит в два раза быстрее, чем по положению 3. В газовой фазе при использовании кислот умеренной силы, таких, как C 4 H 9 + и NH 4 + , пиррол протонируется исключительно по атомам углерода, причем склонность к присоединению протона по положению 2 выше, чем по положению 3. Наиболее термодинамически стабильный катион - 2Н-пирролиевый ион - образуется при присоединении протона по положению 2 и определяемое значение рК а для пиррола связано именно с этим катионом. Слабая N-основность пиррола обусловлена отсутствием возможности для мезомерной делокализации положительного заряда в 1H-пирролиевом катионе.

Общий вид реакций электрофильного замещения:

R − X + Y + → R − Y + X + {\displaystyle {\mathsf {R\!\!-\!\!X+Y^{+}}}\rightarrow {\mathsf {R\!\!-\!\!Y+X^{+}}}} (катионный электрофил)

R − X + Y − Z → R − Y + X − Z {\displaystyle {\mathsf {R\!\!-\!\!X+Y\!\!-\!\!Z}}\rightarrow {\mathsf {R\!\!-\!\!Y+X\!\!-\!\!Z}}} (нейтральный электрофил)

Выделяют реакции ароматического (широко распространены) и алифатического (мало распространены) электрофильного замещения. Характерность реакций электрофильного замещения именно для ароматических систем объясняется высокой электронной плотностью ароматического кольца, способного притягивать положительно заряженные частицы.

Реакции ароматического электрофильного замещения играют крайне важную роль в органическом синтезе и широко используются как в лабораторной практике, так и промышленности.

Энциклопедичный YouTube

    1 / 5

    ✪ Электрофильное Ароматическое Замещение

    ✪ Механизм электрофильного ароматического замещения

    ✪ Алкены. Механизм реакции электрофильного присоединения.

    ✪ Механизмы химических реакций. Ч.2. Классификация механизмов. Электрофильные и нуклеофильные реакции.

    ✪ Классификация реакций: нуклеофилы, электрофилы, радикалы

    Субтитры

    Мы с вами уже говорили о бензольном кольце. Так, я плохо его нарисовал, давайте я его перерисую. Итак, мы уже обсуждали, что стабильность бензола связана с его ароматичностью. Вот эти электроны на этих π-орбиталях, формирующие двойные связи, принадлежат не только этим связям. Они находятся в постоянном движении. Этот может пойти сюда. Этот - сюда. А этот - вот сюда. Электроны не просто перемещаются туда-сюда. Они «циркулируют» по всему кольцу. Таким образом, ароматическая молекула оказывается более стабильной. Мы уже видели примеры ароматических соединений или, правильнее сказать, мы видели примеры бензольного кольца с введенными заместителями, галоген заместителями или же OH-группой. В этом видеоуроке мне хотелось бы подробнее рассмотреть, как можно присоединить заместитель к бензольному кольцу. Сегодня мы будем изучать электрофильное ароматическое замещение. Давайте запишем. Электрофильное ароматическое замещение. Вы можете справедливо заметить: «Сэл, ты сказал, что ты добавляешь заместители». Но в действительности у бензола уже есть шесть атомов водорода. Здесь один водород, два водорода, три водорода, четыре водорода, пять водородов и, наконец, шесть водородов. Они всегда есть у бензола. И, даже не рисуя их, мы их подразумеваем. Когда мы добавляем хлор или же бром, или же OH-группу, то мы замещаем их на один из атомов водорода. Потому это называется «замещением». А «ароматическое», потому что мы имеем дело с бензольным кольцом. Итак, мы будем рассматривать ароматическую молекулу и мы увидим, что чтобы замещение прошло, нам понадобится очень сильный электрофил. Давайте попробуем представить, как это произойдет. Но прежде позвольте я скопирую и вставлю рисунок, чтобы его не перерисовывать. Давайте скопируем его. Допустим, у нас есть действительно сильный электрофил. В следующем видеоуроке мы рассмотрим несколько конкретных примеров, чтобы вы понимали, что такое сильный электрофил. Но, думаю, слово «электрофил» уже само по себе наводит на мысль, что это что-то, что любит электроны. Электрофил хочет заполучить электроны очень, очень и очень сильно. И обычно у электрофила положительный заряд. Итак, он требует электроны. Давайте немного проясним этот момент. Не будем писать, что электрофилу нужны электроны. Потому что, когда мы говорим об электрофилах или нуклеофилах, то мы имеем в виду их реакционную способность. Запишем это по-другому: принимает электроны. Действительно очень, очень и очень хорошо принимает электроны. Что же произойдет? Как мы уже сказали, бензол это стабильная молекула. Вот эти электроны, эти π-электроны постоянно циркулируют. Что же произойдет, если такая молекула столкнется определенным образом с молекулой электрофила? Давайте обозначим вот этот электрон здесь. Как видно из рисунка, он находится у этого атома углерода. Я думаю, это понятно, что углерод находится здесь. Хотя толком я его и не нарисовал. Но если этот, хорошо принимающий электроны электрофил, столкнется определенным образом с бензолом, то этот электрон перейдет к электрофилу. Итак, таким образом… Давайте я просто скопирую и вставлю первоначальную молекулу. Итак, что же теперь изменилось? Вот этой связи у нас больше нет. Этот углерод теперь связан с электрофилом. Проясним это. Этот электрон раньше был тут. Этот электрон по-прежнему принадлежит этому углероду, а другой электрон переходит к электрофилу, который с удовольствием забирает его себе. Итак, теперь этот электрон принадлежит электрофилу. Электрофил, таким образом, получил электрон. До этого он был положительно заряжен, а теперь нейтрально. Повторюсь, что конкретные примеры мы рассмотрим в следующих видеоуроках. Вернемся к замещению. Эту связь мы теперь наблюдаем вот тут. Этот атом углерода вот тут потерял электрон. И поскольку он потерял электрон, на нем появится положительный заряд. На самом деле проделать такое с резонансно-стабилизированной молекулой не просто. Поэтому, как я уже неоднократно говорил, участвовать в реакции должен действительно сильный электрофил. Стоит отметить, что получившийся карбокатион относительно стабилен. И, несмотря на то, что это всего лишь вторичный карбокатион, он оказывается стабильным благодаря резонансу. Этот электрон может перейти к карбокатиону. Если это произойдет, мы получим вот что. Давайте перерисуем кольцо. Нарисуем резонансные структуры как можно быстрее. Здесь у нас водород. Здесь электрофил. Вообще-то, это больше не электрофил, просто обозначаем этот заместитель буквой «E». Здесь водород. Здесь двойная связь. Давайте нарисуем ее немного аккуратнее. Здесь у нас водород. Здесь водород, здесь водород и вот тут. И я сказал, что эта структура стабилизирована. Электрон отсюда может перепрыгнуть сюда. Если этот электрон перейдет вот сюда, то двойная связь теперь окажется здесь. Еще раз. Электрон перейдет сюда и двойная связь теперь тут. Этот атом углерода отдал свой электрон и теперь он положительно заряжен. Вот почему такая структура оказывается резонансно-стабилизированной. Электрон может вернуть нас к предыдущей структуре, а может сам перескочить вот сюда. Давайте я опять перерисую все это. Нарисуем сразу все атомы водорода. Вот здесь у нас заместитель и атом водорода. Еще водород здесь, еще здесь, здесь и здесь. Обычно столько внимания водородам не уделяют, но поскольку один из этих атомов будет отщепляться в процессе механизма, в данном случае я предпочитаю их обозначить, чтобы не забыть, что атомы водорода здесь есть. Вернемся к резонансной стабилизации. Если это электрон перейдет сюда, тогда эта двойная связь окажется здесь. Этот атом углерода потерял электрон и теперь несет положительный заряд. Вот эту двойную связь, которая была здесь сверху, рисуем там же, где она и была. Мы можем переходить от одной структуры к другой. Электроны постоянно перемещаются по кольцу. Безусловно, мы говорим не о такой сильной стабилизации, если бы эта молекула была полностью ароматической. Электроны перемещались по π-орбиталям снова и снова, тем самым стабилизируя структуру. Но этот карбокатион все равно относительно стабилен благодаря «циркуляции» электронов по кольцу. Мы также можем считать, что этот положительный заряд «размазывается» между этим углеродом, этим углеродом и вот этим углеродом. Тем не менее, стабильности этому соединению не хватает. Молекула вновь хочет стать ароматической, вернуть себе стабильное состояние. И для того, чтобы вернуться в стабильное состояние, карбокатиону нужно каким-то образом получить электрон. Способ, с помощью которого карбокатион может заполучить электрон, заключается в том, чтобы основание из окружающей среды отщепило этот протон, протон атома углерода, который также связан с электрофилом. Итак, это основание отщепляет протон. Мы говорим только про ядро водорода, так как электрон водорода остается здесь. Давайте нарисуем это другим цветом. Точнее, это электрон, который был у водорода, теперь он переходит к атому углерода вот сюда. Такое пересечение линий выглядит немного запутанно. Электрон может перейти к этому углероду. Что же мы тогда получим? А получим мы вот что. Итак, если это произойдет… Давайте нарисуем желтым наше шестичленное кольцо. Теперь нарисуем все водороды. Какой бы цвет выбрать? Давайте нарисуем их вот таким зеленым. Итак, рисуем все атомы водорода. Теперь давайте не будем спешить. Вот этот водород, точнее только его ядро, отщепило основание. Таким образом, атом водорода перешел к основанию. Вот этот электрон был передан атому водорода. Итак, один электрон перешел к этому водороду, а второй электрон по-прежнему принадлежит основанию. Мы получили сопряженную основанию кислоту, другими словами, основание, которое получило протон. А этот атом углерода теперь соединен только с заместителем, который был раньше нашим электрофилом. Давайте для простоты нарисуем это одним цветом. То, что раньше было электрофилом находится вот здесь, а эта связь соответствует этой связи. Осталось немного. Будем придерживаться одних и тех же цветов. Эта двойная связь соответствует этой двойной связи. У нас есть эта двойная связь. Эта двойная связь, которую мы теперь рисуем здесь. И затем этот электрон вернется к верхнему атому углерода. Давайте расставим все по полочкам. Эта связь и этот электрон возвращаются к этому верхнему углероду. Давайте нарисуем связь и электрон, которые вернулись на свои места. Этот верхний углерод перестает быть положительно заряженным. И мы опять получаем резонансно-стабилизированную структуру. Я забыл упомянуть про заряды. Могло случиться так, что это основание было отрицательно заряжено. Хотя совсем не обязательно. Но, если у этого основания был отрицательный заряд, то после того, как оно отдаст свой электрон водороду, отрицательный заряд пропадет. В этом есть своя логика, потому что сначала у нас были как положительные, так и отрицательные заряды, а после того, как все прореагировало заряды пропали. Суммарный заряд равен нулю. Вернемся к вопросу электрофильного ароматического замещения. Мы заместили один из этих водородов. Мы заместили этот водород вот здесь с помощью электрофила. То, что раньше было электрофилом, после того, как получило электрон, теперь является просто заместителем, присоединенным к бензольному кольцу. И, пройдя весь этот сложный путь, мы, наконец, пришли к новой ароматической молекуле с E-заместителем. В следующем видеоуроке мы рассмотрим конкретные примеры электрофилов и оснований. Subtitles by the Amara.org community

Реакции ароматического электрофильного замещения

Для ароматических систем фактически существует один механизм электрофильного замещения - S E Ar . Механизм S E 1 (по аналогии с механизмом S N 1 ) - встречается крайне редко, а S E 2 (соответствующий по аналогии S N 2 ) - не встречается вовсе .

Реакции S E Ar

Механизм реакции S E Ar или реакции ароматического электрофильного замещения (англ. Electrophilic aromatic substitution ) является самым распространенным и наиболее важным среди реакций замещения ароматических соединений и состоит из двух стадий. На первом этапе происходит присоединение электрофила, на втором - отщепление электрофуга:

Скорость реакции = k**

В качестве атакующей частицы обычно выступают относительно слабые электрофилы, поэтому в большинстве случаев реакция S E Ar протекает под действием катализатора - кислоты Льюиса. Чаще других используются AlCl 3 , FeCl 3 , FeBr 3 , ZnCl 2 .

В этом случае механизм реакции выглядит следующим образом (на примере хлорирования бензола , катализатор FeCl 3) :

1.На первом этапе катализатор взаимодействует с атакующей частицей с образованием активного электрофильного агента:

C l − C l + F e C l 3 ⇄ C l − C l + ⋅ ⋅ ⋅ F e C l 3 − ⇄ C l + F e C l 4 − {\displaystyle {\mathsf {Cl\!\!-\!\!Cl+FeCl_{3}}}\rightleftarrows {\mathsf {Cl\!\!-\!\!Cl^{+}}}\!\cdot \cdot \cdot {\mathsf {FeCl_{3}^{-}}}\rightleftarrows {\mathsf {Cl^{+}FeCl_{4}^{-}}}}

2. На втором этапе, собственно, и реализуется механизм S E Ar :

H N O 3 + 2 H 2 S O 4 → N O 2 + + H 3 O + + 2 H S O 4 − {\displaystyle {\mathsf {HNO_{3}+2H_{2}SO_{4}}}\rightarrow {\mathsf {NO_{2}^{+}+H_{3}O^{+}+2HSO_{4}^{-}}}}

Скорость реакции = k**

X 2 + F e X 3 → X + + F e X 4 − {\displaystyle {\mathsf {X_{2}+FeX_{3}}}\rightarrow {\mathsf {X^{+}+FeX_{4}^{-}}}}

В замещенных бензолах возможна так называемая ипсо -атака, то есть замещение имеющегося заместителя на другой:

Реакции алифатического электрофильного замещения

Реакции S E 1

Механизм реакции S E 1 или реакции мономолекулярного электрофильного замещения (

Механизм реакций электрофильного замещения в ароматическом кольце включает ряд последовательных стадий.

1) Образование электрофильной частицы . Как правило электрофильные частицы образуются в процессе реакции в присутствии катализаторов и соответствующих условиях. Например, при нагревании азотной кислоты образуется нитроний катион (а), серной кислоты - сульфоний катион (б), а при галогенировании (например, хлорирование) образуется электрофильная частица, которая может быть представлена катионом галогена или в виде комплекса галогена с катализатором (в):

нитроний сульфоний

катион катион

Или

хлор комплекс

катион с катализатором

2) Образование p - комплекса происходит при атаке p - электронного облака кольца электрофильной частицей, например, комплексом хлора с катализатором, при этом образуется p - комплекс по донорно – акцепторному типу.

3) Образование s - комплекса происходит при возникновении ковалентной связи между электрофилом и атомом углерода бензольного кольца, за счет пары электронов p - системы кольца, что сопровождается переходом атома углерода из sp 2 - в sp 3 - гибридизованное состояние.

4) Образование конечного продукта осуществляется за счет отщепления протона водорода от s - комплекса с помощью основания.

Схема механизма реакции электрофильного замещения в бензоле

на примере реакции хлорирования

Электрофильное замещение в бензоле приводит к образованию единственного продукта монозамещения, что определяется равномерным распределением электронной плотности в сопряженной системе кольца и, соответственно, равновероятной атакой электрофилом любого из шести атомов углерода бензола.

Реакции замещения

Электрофильное замещение в бензоле представлено схемами синтеза гомологов бензола (а) и его производных (б).

а) Синтез гомологов бензола:

б) Синтез производных бензола:

Галогенирование. Бензол в обычных условиях не взаимодействует с хлором и бромом. Реакция протекает только в присутствии катализаторов, которыми чаще всего являются галогениды алюминия, железа (кислоты Льюиса).

Нитрование . Бензол нитруется смесью концентрированных азотной и серной кислот (нитрующая смесь ) при нагревании до 60 о С с образованием нитробензола.

Сульфирование. При взаимодействии бензола с концентрированной кислотой или олеумом (смесь концентрированной серной кислоты и серного ангидрида – SO 3) образуется бензолсульфоновая кислота.

Ацилирование представляет собой один из методов синтеза ароматических кетонов. В качестве ацилирующих реагентов используют хлорангидриды кислот (RCOCI) или ангидриды кислот (RCO-O-OCR). Реакцию проводят в неполярном растворителе в присутствии хлорида алюминия.

Алкилирование является одним из способов получения гомологов бензола. В качестве алкилирующих реагентов можно использовать галогеналканы, спирты и алкены в присутствии галогенидов металлов (алюминия, железа, олова и др.).

Правила ориентации в реакциях электрофильного

Замещения в бензоле

В производных бензола и его гомологов заместители нарушают равномерное распределение электронной плотности и тем самым, определенным образом, влияют на реакционную способность и направление атаки в бензольном кольце. Ориентирующее влияние заместителей, обусловленое суммарным действием их электронных эффектов (см. 2.5; табл.2.2), рассмотрим на примере фенола и нитробензола.

В молекуле фенола заместитель (- ОН) проявляет отрицательнй индуктивный (-I ) и положительный мезомерный (+M ) электронные эффекты, последний является преобладающим в суммарном электронодонорном (ЭД ) действии (а). Электронный эффект ЭД заместителя приводит к перераспределению электронной плотности в кольце повышая ее в орто - и пара – положениях, в которых облегчается

В молекуле нитробензола заместитель (-NO 2) проявляет отрицательнй индуктивный (-I ) и отрицательный мезомерный (+M ) электронные эффекты, что проявляется в суммарном электроноакцепторном (ЭА ) действии (б). Электронный эффект ЭА заместителя приводит к перераспределению электронной плотности в кольце, понижая ее в орто - и пара – положениях, в которых затрудняется атака электрофильными реагентами.

фенол нитробензол

Правила замещения:

1) Электронодонорные заместители (ЭД ) повышают электронную плотность кольца и тем самым увеличивают скорость реакции электрофильного замещения. К заместителям, проявляющим ЭД характер, относятся группы: - NH 2 , - OH, - OR, - R, которые ориентируют электрофильное замещение в орто - и пара - положение. Исключение составляют галогены, которые направляют электрофильную частицу предпочтительно в пара - положение.

2) Электроноакцепторные заместители (ЭА ) понижают электронную плотность кольца и тем самым уменьшают скорость реакции электрофильного замещения. К заместителям, проявляющим ЭА характер, относятся группы: - NO 2 , - COOH, - SO 3 H, >C=O и др., которые ориентируют электрофильное замещение в мета - положение, затрудняя его.

Правила замещения можно продемонстрировать на реакции нитрования бензола (а) и его производных, содержащих электронодонорный (б) и электроноакцепторный (в) заместители. В представленных схемах реакций отражены условия и выход продукта реакции (в %), отражающий активность ориентирующего влияния заместителя в орто -, мета - или пара – положения. Как правило, в уравнении реакции указывают то направление электрофильной атаки, которое более предпочтительно в данных условиях реакции:

а) нитрование бензола:

нитробензол

б) нитрование фенола:

орто -нитро- пара -нитро- пикриновая

фенол фенол кислота

в) нитрование нитробензола:

мета -динитробензол

Электронные эффекты заместителей позволяют расположить приведенные соединения в следующий ряд по снижению активности в реакции нитрования: фенол, бензол и нитробензол.

Если в бензольном кольце заместителей больше, чем один, то их ориентирующее влияние может быть согласованным или несогласованным, в зависимости от их типа и взаимного расположения.

Примером согласованной ориентации может служить реакция нитрования орто - нитрофенола и пара - нитрофенола до пикриновой кислоты (реакция б). В данном случае оба заместителя (электронодонорный – ОН, электроноакцепторный – NO 2) согласованно ориентируют последующее электрофильное замещение в орто - и пара - положения по отношению к гидроксильной группе.

Ориентирующее влияние ЭД заместителя является определяющим в реакции электрофильного замещения, в случае его несогласованного ориентирующего действия с ЭА заместителем.

Правила ориентирующего влияния заместителей используют для целенаправленного синтеза, включающего несколько последовательных реакций. Например, чтобы получить из толуола орто -, мета - и пара - нитробензойные кислоты необходимо в определенной последовательности провести реакции нитрования и окисления.

Метильная группа (- СН 3) относится к электронодонорным заместителям, соответственно по правилам ориентирующего влияния направляет электрофильное замещение в орто - и пара - положения (а).

Карбоксильная группа (- СООН) является электроноакцепторным заместителем, соответственно по правилам ориентирующего влияния направляет электрофильное замещение в мета - положение (б).

Таким образом, чтобы получить из толуола все изомеры нитробензойной кислоты необходимо провести синтез в соответствии со схемами реакций, представленными ниже.

а) Схема синтеза орто - и пара - изомеров нитробензойной кислоты предполагает первоначально провести реакцию нитрования, а затем – окисления:

б) Схема синтеза мета – изомера нитробензойной кислоты предполагает первоначально провести реакцию окисления, а затем – нитрования:

Валентность