Исследование характеристик вогнутых дифракционных решёток. Дифракционная решетка

Дифракционная решетка

Очень большая отражательная дифракционная решётка.

Дифракционная решётка - оптический прибор, работающий по принципу дифракции света, представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность. Первое описание явления сделал Джеймс Грегори , который использовал в качестве решётки птичьи перья.

Виды решёток

  • Отражательные : Штрихи нанесены на зеркальную (металлическую) поверхность, и наблюдение ведется в отраженном свете
  • Прозрачные : Штрихи нанесены на прозрачную поверхность (или вырезаются в виде щелей на непрозрачном экране), наблюдение ведется в проходящем свете.

Описание явления

Так выглядит свет лампы накаливания фонарика, прошедший через прозрачную дифракционную решётку. Нулевой максимум (m =0) соответствует свету, прошедшему сквозь решётку без отклонений. В силу дисперсии решётки в первом (m =±1) максимуме можно наблюдать разложение света в спектр . Угол отклонения возрастает с ростом длины волны (от фиолетового цвета к красному)

Фронт световой волны разбивается штрихами решётки на отдельные пучки когерентного света. Эти пучки претерпевают дифракцию на штрихах и интерферируют друг с другом. Так как для каждой длины волны существует свой угол дифракции, то белый свет раскладывается в спектр.

Формулы

Расстояние, через которое повторяются штрихи на решётке, называют периодом дифракционной решётки. Обозначают буквой d .

Если известно число штрихов (N ), приходящихся на 1 мм решётки, то период решётки находят по формуле: 0,001 / N

Формула дифракционной решётки:

d - период решётки, α - угол максимума данного цвета, k - порядок максимума, λ - длина волны.

Характеристики

Одной из характеристик дифракционной решётки является угловая дисперсия. Предположим, что максимум какого-либо порядка наблюдается под углом φ для длины волны λ и под углом φ+Δφ - для длины волны λ+Δλ. Угловой дисперсией решётки называется отношение D=Δφ/Δλ. Выражение для D можно получить если продифференцировать формулу дифракционной решётки

Таким образом, угловая дисперсия увеличивается с уменьшением периода решётки d и возрастанием порядка спектра k .

Изготовление

Хорошие решётки требуют очень высокой точности изготовления. Если хоть одна щель из множества будет нанесена с ошибкой, то решётка будет бракована. Машина для изготовления решёток прочно и глубоко встраивается в специальный фундамент. Перед началом непосредственного изготовления решёток, машина работает 5-20 часов на холостом ходу для стабилизации всех своих узлов. Нарезание решётки длится до 7 суток, хотя время нанесения штриха составляет 2-3 секунды.

Применение

Дифракционную решётку применяют в спектральных приборах, также в качестве оптических датчиков линейных и угловых перемещений (измерительные дифракционные решётки), поляризаторов и фильтров инфракрасного излучения, делителей пучков в интерферометрах и так называемых "антибликовых" очках.

Литература

  • Сивухин Д. В. Общий курс физики. - Издание 3-е, стереотипное. - М .: Физматлит, МФТИ , 2002. - Т. IV. Оптика. - 792 с. - ISBN 5-9221-0228-1
  • Тарасов К. И., Спектральные приборы, 1968

См. также

  • Фурье-оптика

Wikimedia Foundation . 2010 .

Смотреть что такое "Дифракционная решетка" в других словарях:

    Оптический прибор; совокупность большого количества параллельных щелей в непрозрачном экране или отражающих зеркальных полосок (штрихов), равноотстоящих друг от друга, на которых происходит дифракция света. Дифракционная решетка разлагает… … Большой Энциклопедический словарь

    ДИФРАКЦИОННАЯ РЕШЕТКА, пластина с нанесенными на нее параллельными линиями на равном расстоянии друг от друга (до 1500 на 1 мм), которая служит для получения СПЕКТРОВ при ДИФРАКЦИИ света. Трансмиссионные решетки прозрачные и расчерчиваются на… … Научно-технический энциклопедический словарь

    дифракционная решетка - Зеркальная поверхность с нанесенными на нее микроскопическими параллельными линиями, прибор, разделяющий (подобно призме) падающий на него свет на составные цвета видимого спектра. Тематики информационные технологии в …

    дифракционная решетка - difrakcinė gardelė statusas T sritis Standartizacija ir metrologija apibrėžtis Optinis periodinės sandaros įtaisas difrakciniams spektrams gauti. atitikmenys: angl. diffraction grating vok. Beugungsgitter, n; Diffraktionsgitter, n rus.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    Оптический прибор, совокупность большого количества параллельных щелей в непрозрачном экране или отражающих зеркальных штрихов (полосок), равноотстоящих друг от друга, на которых происходит дифракция света. Д.Р. разлагает падающий на нее свет в… … Астрономический словарь

    дифракционная решетка (в оптических линиях связи) - дифракционная решетка Оптический элемент с периодической структурой, отражающий (или пропускающий) свет под одним или несколькими разными углами, зависящими от длины волны. Основу составляют периодически повторяющиеся изменения показателя… … Справочник технического переводчика

    вогнутая спектральная дифракционная решетка - Спектральная дифракционная решетка, изготовленная на вогнутой оптической поверхности. Примечание Вогнутые спектральные дифракционные решетки бывают сферическими и асферическими. [ГОСТ 27176 86] Тематики оптика, оптические приборы и измерения … Справочник технического переводчика

    голограммная спектральная дифракционная решетка - Спектральная дифракционная решетка, изготовления регистрацией на чувствительном к излучению материале интерференционной картины от двух и более когерентных пучков. [ГОСТ 27176 86] Тематики оптика, оптические приборы и измерения … Справочник технического переводчика

    нарезная спектральная дифракционная решетка - Спектральная дифракционная решетка, изготовленная нанесением штрихов на делительной машине. [ГОСТ 27176 86] Тематики оптика, оптические приборы и измерения … Справочник технического переводчика

    отражательная спектральная дифракционная решетка - Спектральная дифракционная решетка, выполняющая функции диспергирующего элемента в отраженном от нее оптическом излучении. [ГОСТ 27176 86] Тематики оптика, оптические приборы и измерения … Справочник технического переводчика

Книги

  • Комплект таблиц. Геометрическая и волновая оптика (18 таблиц) , Учебный альбом из 12 листов. Артикул - 5-8670-018. Принцип Гюйгенса. Отражение волн. Изображение предмета в плоском зеркале. Преломление света. Полное внутреннее отражение. Дисперсия… Категория:

Дифракционные решетки нашли широкое применение для исследования спектрального состава излучения. До сих пор мы предполагали, что падающий на решетку свет монохроматический, т. е. содержит только одну длину волны. В случае, если решетка освещается светом, имеющим сложный спектр, например белым светом, главные полосы для каждой длины ролны получаются в различных местах; в результате получается спектр. Спектры, соответствующие первой, второй и т. д. главным полосам, называют спектрами первого, второго и т. д. порядка. Значит, в спектре первого порядка разность хода между складываемыми колебаниями равна в спектре второго порядка 2% и т. д. Спектр «нулевого порядка», собственно говоря, не является спектром, так как положение нулевой полосы, определяемое разностью хода нуль, очевидно, не зависит от длины волны.

Мы видели выше, что положение главных светлых полос определяется формулой

где а - ширина каждой щели, ширина промежутка между соседними щелями, целое число, определяющее номер полосы (порядок спектра). Обычно на практике углы невелики, вследствие чего написанное условие превращается в

Для двух разных длин волн мы будем иметь соответственно:

Из формулы (6) следует, что угол между двумя направлениями, соответствующими двум светлым полосам, образованным двумя разными длинами волн, т. е. практически расстояние между этими полосами на экране, прямо пропорционален порядку спектра и обратно пропорционален так называемой постоянной решетке

В то время как в призматическом спектре красная часть «сжата по сравнению с фиолетовой (см. § 42), у дифракционной решетки спектр растянут равномерно и тем больше, чем больше его порядок

Зная постоянную дифракционной решетки (ее можно измерить под микроскопом) и измеряя угол можно с большой точностью определить длину волны света, дающую светлую полосу определенного порядка под углом Мы видели выше, что «дисперсия», т. е. способность решетки растягивать спектр, пропорциональна порядку последнего Поэтому, когда решетку применяют для спектрального разложения, желательно производить наблюдение в спектре возможно большего порядка. Однако ряд обстоятельств препятствует этому: яркость спектра убывает с увеличением порядка (рис. 95). Кроме того, спектры высоких порядков частично перекрывают друг друга. Эти два обстоятельства сильно ограничивают возможность применения спектров высокого порядка.

Известное облегчение в этом смысле дает возможность уничтожения некоторых спектров путем подбора соотношения между a и b. Например, мы видели выше, что при должны исчезать спектры четных порядков.

Мы показали, что с увеличением числа щелей решетки главные дифракционные полосы становятся уже. В связи с этим решетки делают с очень большим количеством щелей, потому что чем уже полосы, тем более детально можно исследовать спектры, состоящие обычно из многочисленных тесных линий. Две близкие линии могут быть разрешены решеткой только в том случае, если ширина изображения каждой из них, определяемая общим числом щелей

решетки, не более, чем расстояние между линиями, определяемое постоянной решетки

Согласно Релею две спектральные линии считаются разрешенными если главный максимум одной линии попадает на первый нуль около главного максимума другой линии.

Условие главного максимума будет:

условие первого нуля (формула (10) гл. III) есть

Так как по условию Релея то

Величина определяет наименьшую разность длин волн, разрешаемую решеткой. Отношение называется разрешающей способностью спектрального прибора.

Таким образом, разрешающая способность решетки, т. е. способность ее разделять близкие спектральные линии, пропорциональная общему числу щелей решетки, измеряется произведением количества щелей на порядок спектра.

Дифракционные решетки изготовляют на стекле или металле (в последнем случае дифракционную картину наблюдают в отраженном свете). Тончайшим алмазным острием с помощью точной длительной машины наносятся штрихи, промежутки между которыми служат щелями. Некоторые решетки имеют около 2000 штрихов на что при величине решетки в несколько сантиметров составляет огромное количество щелей, обеспечивающее большую разрешающую способность. Так, большой дифракционный спектрограф позволяет получать по частям солнечный спектр в таком масштабе, что полная длина его от красного до фиолетового конца составляет около

Оптическая схема спектрографа с дифракционной решеткой очень проста. Узкая щель, параллельная щелям решетки, освещается источником света. Эта щель расположена в главном фокусе первой линзы, создающей плоские волны, падающие на решетку. После решетки стоит вторая линза, в главной фокальной плоскости которой наблюдаются спектры.

Если решетка нанесена на зеркало, то дифракционные спектры наблюдают в отраженном свете. Когда свет падает под углом а с нормалью к решетке (рис. 96), нулевую полосу получают в направлении зеркального отражения. Вся решетка действует при этом как прозрачная решетка являющаяся проекцией на фронт волны. Очевидно, постоянная решетки будет равна с если с - постоянная решетки Следовательно, при косом падении света решетка работает так, как если бы ее штрихи были ближе друг к другу. Это обстоятельство позволило получить дифракционные спектры рентгеновых лучей при скользящем отражении от обычной дифракционной решетки. Ввиду малости длин волн рентгеновых лучей для них требуется решетка с значительно меньшей постоянной, чем для видимого света.

Рис. 96. Плоская отражательная решетка.

Рис. 97. Вогнутая решетка Роуланда.

Сделать такие решетки невозможно. Малое значение косинуса скользящего угла падения заставляет решетку с большой постоянной работать так, как если бы ее постоянная была мала. Пользуясь тем же обстоятельством можно получить спектр, например, от граммофонной пластинки, имеющей всего три - пять штрихов на если смотреть на отражение в ней маленькой лампы при скользящем падении света.

Металлическая отражающая решетка имеет ряд преимуществ по сравнению со стеклянными. В частности, металл как материал более мягкий можно нарезать алмазом гораздо точнее, чем стекло. Кроме того, стекло не пропускает, например, ультрафиолетового излучения; отражающая же решетка позволяет при подходящем материале исследовать широкие участки спектра.

Роуланд предложил наносить штрихи решетки на вогнутую сферическую поверхность зеркала. При этом нет необходимости применять добавочные зеркала, фокусирующие дифракционные спектры. Простое вычисление показывает, что если освещенную щель (рис. 97) поместить где-нибудь на окружности, диаметр которой равен радиусу кривизны решетки, то спектры разного порядка получаются в различных точках той же окружности. При

этом разрешающая сила тем более велика, чем больше радиус кривизны вогнутой решетки. С решетками, имеющими радиус кривизны около удается получать спектры, в которых расстояние между двумя желтыми линиями натрия составляет около 1 см.

Если мы сравним действие дифракционных решеток с действием пластинки Люммера - Герке, то увидим, что в решетках складывается большее число колебаний (десятки и сотни тысяч), зато разность хода между соседними колебаниями (порядок спектра) значительно меньше (не превышает нескольких длин волн). Мы уже указывали, что для разрешающей способности важно только произведение этих величин. Преимущество решеток состоит в том, что они делают доступной для исследования более широкую спектральную область (благодаря малому m; § 28), но практически решетки обычно не дают такой большой разрешающей способности, как интерференционные эталоны.

Рис. 98. Эшелон Майкельсона.

Можно построить дифракционную решетку специального типа, в которой разность хода между соседними колебаниями будет очень велика (но число колебаний, как и в эталоне, сравнительно не велико). Майкельсон предложил пользоваться в качестве дифракционной решетки стопой стеклянных пластинок равной толщины сложенных «ступеньками» (рис. 98). Действие такой решетки, так называемого эшелона, основано на том, что оптический путь света в стекле (показатель преломления 1,5) в 1,5 раза больше, чем равный ему геометрический путь в воздухе. Поэтому, например, лучи

Дифракционные решетки для спектральных приборов

Дифракционная решётка (ДР) - это оптическое изделие, представляющее собой периодическую структуру заданной глубины и формы. При падении световой волны на ДР в результате дифракции на этой периодической структуре происходит перераспределение волнового фронта падающей волны в пространстве в соответствии со спектральными характеристиками ДР. Дифракционные решётки могут быть отражательного и пропускающего типа и используются в качестве диспергирующих элементов спектральных приборов различного типа.

Ещё совсем недавно в спектральных приборах использовались только дифракционные решётки, у которых штрихи нарезались с помощью специальных делительных машин с алмазными резцами. Эти решётки имеют равноотстающие друг от друга параллельные штрихи, форма сечения которых определяется профилем режущей грани алмазного резца. Форма штриха может быть различной, но элементы решётки – штрихи – повторяются через строго одинаковые промежутки, которые называются периодом дифракционной решётки.

В последнее время была разработана новая технология изготовления дифракционных решёток путём образования на специальных светочувствительных материалах (фоторезистах) интерференционной картины от излучения лазеров. Такие дифракционные решётки называются голографическими.

Если штрихи решётки нанесены на плоскую поверхность, то такие решётки называются плоскими. Если штрихи нанесены на вогнутую сферическую поверхность, то такие решётки вогнутые. Они обладают фокусирующим действием. В современных спектральных приборах используются как плоские, так и вогнутые дифракционные решётки.

Компания «ХолоГрэйт» при производстве голографических (голограммных) дифракционных решёток использует неорганический фоторезист собственной разработки, который обладает низким светорассеянием и высоким разрешением. Технология с использованием такого фоторезиста позволяет изготавливать дифракционные решётки с квазисинусоидальной формой профиля штриха на подложках с различной формой и кривизной поверхности (один из профилей представлен на рисунке внизу).

В настоящее время ЗАО «ХолоГрэйт» проводит научные исследования по получению голографических дифракционных решёток с заданными треугольным и прямоугольным профилями штриха с применением ионного травления фоторезиста.

Плоская голографическая дифракционная решетка

Высокая дифракционная эффективность. Размер: до 200 х 400 мм. Спектральный диапазон: от мягкого рентгена до 2 микрон. Частота штрихов: от 100 до 3600 линий/мм. Покрытие: Al, Al + MgF, Au.

Низкое светорассеяние, высокое отношение сигнал/шум, отсутствие "духов" в спектре.

Для более подробной информации, обращайтесь: grating@сайт

Вогнутая голографическая дифракционная решетка

Голографическая дифракционная решетка. Тип 1

Вогнутая голографическая дифракционная решётка I типа записывается на покрытой слоем фоторезиста вогнутой подложке в интерференционном поле, полученном в результате интерференции двух параллельных пучков когерентного излучения. После химической обработки экспонированного слоя на вогнутой поверхности образуется периодическая структура с прямыми штрихами и периодом, равным расстоянию между максимумами образовавшейся интерференционной картины.

Голографическая дифракционная решетка. Тип 2

Вогнутая голографическая дифракционная решётка II типа получается в результате записи интерференционной картины от двух расходящихся точечных источников когерентного света, расположенных на круге Роуланда. Запись осуществляется на вогнутую сферическую подложку. Записанная таким образом дифракционная решётка обладает криволинейными неэквидистантными штрихами, которые позволяют полностью скомпенсировать астигматизм для одной длины волны.

Голографическая дифракционная решетка. Тип 3

Вогнутая голографическая дифракционная решётка III типа типа записывается двумя расходящимися точечными источниками когерентного света, которые расположены на прямой, проходящей через центр кривизны сферической подложки. При этом точечные источники находятся по одну сторону от оси сферы.

У такой дифракционной решётки существуют три стигматические точки для трёх длин волн. Фокальная поверхность такой решётки не совпадает с кругом Роуланда, а имеет сложную форму, зависящую от периода решётки.

Голографическая дифракционная решетка. Тип 4

Вогнутая голографическая дифракционная решётка IV типа типа записывается также, как и дифракционные решётки III типа: двумя расходящимися точечными источниками когерентного света.

Расположение точечных источников выбирается после решения системы уравнений для одновременной минимизации аберраций расфокусировки, стигматизма, комы. Такие дифракционные решётки широко используются в монохроматорах в схеме с простым вращением. В этой схеме положение входной и выходной щели остаётся неизменным, вращается только дифракционная решётка вдоль вертикальной оси.

Валентность