Электролиз расплавов и растворов веществ. Решение химических задач на закон фарадея в курсе средней школы Алгоритм написания уравнений реакций гидролиза соли сильной кислоты и сильного основания

Решение химических задач
на закон Фарадея в курсе
средней школы

Авторская разработка

Среди великого множества разнообразных химических задач, как показывает практика преподавания в школе, наибольшие затруднения вызывают задачи, для решения которых помимо прочных химических знаний требуется неплохо владеть материалом курса физики. И хотя далеко не в каждой средней школе уделяется внимание решению хотя бы простейших задач с использованием знаний двух курсов – химии и физики, задачи такого типа иногда встречаются на вступительных экзаменах в вузах, где химия является профилирующей дисциплиной. А потому, не разобрав задачи такого типа на уроках, учитель может неумышленно лишить своего ученика шанса на поступление в вуз на химическую специальность.
Эта авторская разработка содержит свыше двадцати задач, так или иначе связанных с темой «Электролиз». Для решения задач данного типа необходимо не только хорошо знать тему «Электролиз» школьного курса химии, но и знать закон Фарадея, который изучается в школьном курсе физики.
Возможно, эта подборка задач не будет интересна абсолютно всем ученикам в классе или всем доступна. Тем не менее задачи данного типа рекомендуется разобрать с группой заинтересованных учащихся на кружковом или факультативном занятии. Можно с уверенностью отметить, что задачи такого типа усложненные и по крайней мере не являются типовыми для школьного курса химии (речь идет о средней общеобразовательной школе), а потому задачи данного типа можно смело включать в варианты школьной или районной химической олимпиады для 10-х или 11-х классов.
Наличие подробного решения для каждой задачи делает разработку ценным подспорьем, особенно для начинающих учителей. Разобрав несколько задач с учащимися на факультативном занятии или занятии кружка, творчески работающий учитель непременно задаст несколько однотипных задач на дом и воспользуется данной разработкой в процессе проверки домашних заданий, что позволит существенно сэкономить бесценное учительское время.

Теоретические сведения по проблеме

Химические реакции, протекающие под действием электрического тока на электродах, помещенных в раствор или расплав электролита, называют электролизом. Рассмотрим пример.

В стаканчике при температуре около 700 °С находится расплав хлорида натрия NaCl, в него погружены электроды. До пропускания через расплав электрического тока ионы Na + и Cl – движутся хаотически, однако при наложении электрического тока движение этих частиц становится упорядоченным: ионы Na + устремляются к отрицательно заряженному электроду, а ионы Cl – – к положительно заряженному электроду.

Ион – заряженный атом или группа атомов, обладающая зарядом.

Катион – положительно заряженный ион.

Анион – отрицательно заряженный ион.

Катод – отрицательно заряженный электрод (к нему движутся положительно заряженные ионы – катионы).

Анод – положительно заряженный электрод (к нему движутся отрицательно заряженные ионы – анионы).

Электролиз расплава хлорида натрия на платиновых электродах

Суммарная реакция:

Электролиз водного раствора хлорида натрия на угольных электродах

Суммарная реакция:

или в молекулярной форме:

Электролиз водного раствора хлорида меди(II) на угольных электродах

Суммарная реакция:

В электрохимическом ряду активности металлов медь расположена правее водорода, поэтому медь и будет восстанавливаться на катоде, а на аноде будет окисляться хлор.

Электролиз водного раствора сульфата натрия на платиновых электродах

Суммарная реакция:

Аналогично происходит электролиз водного раствора нитрата калия (платиновые электроды).

Электролиз водного раствора сульфата цинка на графитовых электродах

Суммарная реакция:

Электролиз водного раствора нитрата железа(III) на платиновых электродах

Суммарная реакция:

Электролиз водного раствора нитрата серебра на платиновых электродах

Суммарная реакция:

Электролиз водного раствора сульфата алюминия на платиновых электродах

Суммарная реакция:

Электролиз водного раствора сульфата меди на медных электродах – электрохимическое рафинирование

Концентрация CuSO 4 в растворе остается постоянной, процесс сводится к переносу материала анода на катод. В этом и заключается сущность процесса электрохимического рафинирования (получение чистого металла).

При составлении схем электролиза той или иной соли нужно помнить, что:

– катионы металлов, имеющие больший стандартный электродный потенциал (СЭП), чем у водорода (от меди до золота включительно), при электролизе практически полностью восстанавливаются на катоде;

– катионы металлов с небольшими значениями СЭП (от лития до алюминия включительно) не восстанавливаются на катоде, а вместо них восстанавливаются молекулы воды до водорода;

– катионы металлов, у которых значения СЭП меньше, чем у водорода, но больше, чем у алюминия (от алюминия до водорода), при электролизе на катоде восстанавливаются одновременно с водой;

– если водный раствор содержит смесь катионов различных металлов, например Ag + , Cu 2+ , Fe 2+ , то в этой смеси первым восстановится серебро, затем медь и последним – железо;

– на нерастворимом аноде в процессе электролиза происходит окисление анионов или молекул воды, причем анионы S 2– , I – , Br – , Cl – окисляются легко;

– если в растворе находятся анионы кислородсодержащих кислот , , , , то на аноде окисляются молекулы воды до кислорода;

– если анод растворим, то при электролизе он сам подвергается окислению, т. е. посылает электроны во внешнюю цепь: при отдаче электронов смещается равновесие между электродом и раствором и анод растворяется.

Если из всего ряда электродных процессов выделить только те, которые отвечают общему уравнению

М z + + ze = M,

то получим ряд напряжений металлов . В этот ряд всегда помещают также водород, что позволяет видеть, какие металлы способны вытеснять водород из водных растворов кислот, а какие нет (табл.).

Таблица

Ряд напряжений металлов

Уравнение
электродного
процесса
Стандартный
электродный
потенциал при
25 °С, В
Уравнение
электродного
процесса
Стандартный
электродный
потенциал
при 25 °С, В
Li + + 1e = Li 0 –3,045 Co 2+ + 2e = Co 0 –0,277
Rb + + 1e = Rb 0 –2,925 Ni 2+ + 2e = Ni 0 –0,250
K + + 1e = K 0 –2,925 Sn 2+ + 2e = Sn 0 –0,136
Cs + + 1e = Cs 0 –2,923 Pb 2+ + 2e = Pb 0 –0,126
Ca 2+ + 2e = Ca 0 –2,866 Fe 3+ + 3e = Fe 0 –0,036
Na + + 1e = Na 0 –2,714 2H + + 2e = H 2 0
Mg 2+ + 2e = Mg 0 –2,363 Bi 3+ + 3e = Bi 0 0,215
Al 3+ + 3e = Al 0 –1,662 Cu 2+ + 2e = Cu 0 0,337
Ti 2+ + 2e = Ti 0 –1,628 Cu + +1e = Cu 0 0,521
Mn 2+ + 2e = Mn 0 –1,180 Hg 2 2+ + 2e = 2Hg 0 0,788
Cr 2+ + 2e = Cr 0 –0,913 Ag + + 1e = Ag 0 0,799
Zn 2+ + 2e = Zn 0 –0,763 Hg 2+ + 2e = Hg 0 0,854
Cr 3+ + 3e = Cr 0 –0,744 Pt 2+ + 2e = Pt 0 1,2
Fe 2+ + 2e = Fe 0 –0,440 Au 3+ + 3e = Au 0 1,498
Cd 2+ + 2e = Cd 0 –0,403 Au + + 1e = Au 0 1,691

В более простом виде ряд напряжений металлов можно представить так:

Для решения большинства задач на электролиз требуется знание закона Фарадея, формульное выражение которого приведено ниже:

m = M I t /(z F ),

где m – масса выделившегося на электроде вещества, F – число Фарадея, равное 96 485 А с/моль, или 26,8 А ч/моль, М – молярная масса элемента, восстанавливающегося в процессе электролиза, t – время проведения процесса электролиза (в секундах), I – сила тока (в амперах), z – число электронов, участвующих в процессе.

Условия задач

1. Какая масса никеля выделится в процессе электролиза раствора нитрата никеля в течение 1 ч при силе тока 20 А?

2. При какой силе тока необходимо проводить процесс электролиза раствора нитрата серебра, чтобы в течение 10 ч получить 0,005 кг чистого металла?

3. Какая масса меди выделится при электролизе расплава хлорида меди(II) в течение 2 ч при силе тока 50 А?

4. В течение какого времени нужно проводить процесс электролиза водного раствора сульфата цинка при силе тока 120 А, чтобы при этом получить 3,5 г цинка?

5. Какая масса железа выделится в процессе электролиза раствора сульфата железа(III) при силе тока 200 А в течение 2 ч?

6. При какой силе тока необходимо проводить процесс электролиза раствора нитрата меди(II), чтобы в течение 15 ч получить 200 г чистого металла?

7. В течение какого времени необходимо проводить процесс электролиза расплава хлорида железа(II) при силе тока 30 А, чтобы при этом получить 20 г чистого железа?

8. При какой силе тока необходимо проводить процесс электролиза раствора нитрата ртути(II), чтобы в течение 1,5 ч получить 0,5 кг чистого металла?

9. При какой силе тока необходимо проводить процесс электролиза расплава хлорида натрия, чтобы в течение 1,5 ч получить 100 г чистого металла?

10. Расплав хлорида калия подвергли электролизу в течение 2 ч при силе тока 5 А. Полученный металл прореагировал с водой массой 2 кг. Какой концентрации раствор щелочи получился при этом?

11. Сколько граммов 30%-го раствора соляной кислоты потребуется для полного взаимодействия с железом, полученным при электролизе раствора сульфата железа(III) в течение 0,5 ч при силе тока
10 А?

12. В процессе электролиза расплава хлорида алюминия, проводимого в течение 245 мин при силе тока 15 А, получили чистый алюминий. Сколько граммов железа можно получить алюминотермическим методом при взаимодействии данной массы алюминия с оксидом железа(III)?

13. Сколько миллилитров 12%-го раствора КОН плотностью 1,111 г/мл потребуется для взаимодействия с алюминием (с образованием тетрагидроксиалюмината калия), полученным электролизом раствора сульфата алюминия в течение 300 мин при силе тока 25 А?

14. Сколько миллилитров 20%-го раствора серной кислоты плотностью 1,139 г/мл потребуется для взаимодействия с цинком, полученным электролизом раствора сульфата цинка в течение 100 мин при силе тока 55 А?

15. Какой объем оксида азота(IV) (н.у.) получится при взаимодействии избытка горячей концентрированной азотной кислоты с хромом, полученным электролизом раствора сульфата хрома(III) в течение 100 мин при силе тока 75 А?

16. Какой объем оксида азота(II) (н.у.) получится при взаимодействии избытка раствора азотной кислоты с медью, полученной электролизом расплава хлорида меди(II) в течение 50 мин при силе тока 10,5 А?

17. В течение какого времени необходимо проводить электролиз расплава хлорида железа(II) при силе тока 30 А, чтобы получить железо, необходимое для полного взаимодействия со 100 г 30%-го раствора соляной кислоты?

18. В течение какого времени необходимо проводить электролиз раствора нитрата никеля при силе тока 15 А, чтобы получить никель, необходимый для полного взаимодействия с 200 г 35%-го раствора серной кислоты при нагревании?

19. Расплав хлорида натрия подвергли электролизу при силе тока 20 А в течение 30 мин, а расплав хлорида калия подвергли электролизу в течение 80 мин при силе тока 18 А. Оба металла растворили в 1 кг воды. Найдите концентрацию щелочей в полученном растворе.

20. Магний, полученный электролизом расплава хлорида магния в течение 200 мин при силе тока
10 А, растворили в 1,5 л 25%-го раствора серной кислоты плотностью 1,178 г/мл. Найдите концентрацию сульфата магния в полученном растворе.

21. Цинк, полученный электролизом раствора сульфата цинка в течение 100 мин при силе тока

17 А, растворили в 1 л 10%-го раствора серной кислоты плотностью 1,066 г/мл. Найдите концентрацию сульфата цинка в полученном растворе.

22. Железо, полученное электролизом расплава хлорида железа(III) в течение 70 мин при силе тока 11 А, превратили в порошок и погрузили в 300 г 18%-го раствора сульфата меди(II). Найдите массу меди, выпавшей в осадок.

23. Магний, полученный электролизом расплава хлорида магния в течение 90 мин при силе тока
17 А, погрузили в раствор соляной кислоты, взятый в избытке. Найдите объем и количество выделившегося водорода (н.у.).

24. Раствор сульфата алюминия подвергли электролизу в течение 1 ч при силе тока 20 А. Сколько граммов 15%-го раствора соляной кислоты потребуется для полного взаимодействия с полученным алюминием?

25. Сколько литров кислорода и воздуха (н.у.) потребуется для полного сжигания магния, полученного электролизом расплава хлорида магния в течение 35 мин при силе тока 22 А?

Ответы и решения см. в следующих номерах

Министерство образования Российской Федерации

Владимирский государственный университет

Кафедра химии и экологии

Лабораторная работа № 6

Электролиз

Выполнила студентка группы МТС – 104

Сазонова Е.В.

Гришина Е.П.

Владимир 2005

    Цель работы.

    Краткое теоретическое введение.

    Приборы и реактивы.

    Ход выполнения работы, наблюдения, уравнения реакций.

    Цель работы.

Пронаблюдать электролиз различных растворов, составить соответствующие уравнения реакций.

    Краткое теоретическое введение

Электролиз – окислительно-восстановительные процессы, протекающие на электродах при пропускании постоянного электрического тока через раствор или расплав электролита. Электролиз осуществляют с помощью источников постоянного тока в устройствах, называемых электролизерами.

Катод – электрод, соединенный с отрицательным полюсом источника тока. Анод – электрод, подключенный к положительному полюсу. На аноде протекают реакции окисления, на катоде – восстановления.

Процессы электролиза могут проходить с растворимым или нерастворимым анодом. Металл, из которого сделан анод, непосредственно участвует в реакции окисления, т.е. отдает электроны и в виде ионов переходит в раствор или расплав электролита.

Нерастворимые аноды сами не принимают непосредственное участие в окислительном процессе, а являются только переносчиками электронов. В качестве нерастворимых анодов могут быть использованы графит, инертные металлы, такие как платина, иридий и др. на нерастворимых анодах идет реакция окисления какого-либо восстановителя, находящегося в растворе.

При характеристике катодных реакций следует иметь в виду, что последовательность восстановления ионов металлов зависит от положения металла в ряду напряжений и от концентрации их в растворе.. если в растворе одновременно находятся ионы двух или нескольких металлов, то в первую очередь восстанавливаются ионы того металла, который имеет более положительный потенциал. Если потенциалы двух металлов близки, то наблюдается совместное выделение двух металлов, т.е. образуется сплав. В растворах, содержащих ионы щелочных и щелочноземельных металлов, на катоде при электролизе выделяется только водород.

    Приборы и реактивы

Выпрямитель тока; амперметр; штатив; зажимы; соединительные провода; графитовые электроды; электролизер. Раствор хлорида натрия 0,1 М, раствор сульфата натрия 0,1 М, раствор сульфата меди (II) 0,1 М, раствор иодида калия 0,1 М; фенолфталеин, лакмус.

    Ход выполнения работы

Электролиз раствора хлорида натрия

Закрепить электролизер, которым служит U-образная стеклянная трубка, на штативе. Налить в нее на 2/3 объема раствора хлорида натрия. Вставить в оба отверстия трубки электроды и включить постоянный ток напряжением 4 – 6 В. Электролиз вести 3 – 5 мин.

После этого добавить в раствор к катоду несколько капель фенолфталеина, а в раствор к аноду несколько капель раствора иодида калия. Наблюдать окрашивание раствора у катода и у анода. Какие процессы проходят на катоде и на аноде? Написать уравнения реакций, происходящих на катоде и на аноде. Как изменился характер среды в растворе у катода.

Наблюдение: На катоде, к которому капнули фенолфталеин, раствор приобрел малиновый окрас. На аноде восстановился Cl 2 . После добавления крахмала раствор стал фиолетовым.

Уравнение реакции:

NaCl ↔ Na + + Cl -

анод: 2Cl - - 2e → Cl 2

2H 2 O + Cl - → H 2 + Cl 2 + 2OH -

2 NaCl + 2H 2 O → H 2 + 2NaOH + Cl 2

на катоде на аноде

Электролиз раствора сульфата натрия

В электролизер налить раствор сульфата натрия. В раствор к катоду и аноду прилить несколько капель нейтрального лакмуса. Включить ток и через 3 – 5 мин наблюдать изменение окраски электролита в прикатодном и прианодном пространстве.

Написать уравнения реакций, происходящих на катоде и на аноде. Как изменился характер среды в прикатодном и прианодном пространстве раствора?

Наблюдение: раствор в прикатодном пространстве стал красным, в прианодном – синим.

Уравнение реакции:

Na 2 SO 4 ↔ 2Na + + SO 4 2-

катод: 2H 2 O + 2e → H 2 + 2OH -

анод: 2H 2 O - 4e → O 2 + 4H +

4OH - - 4H + → 4H 2 O

2H 2 O → 2H 2 + O 2

II )

В электролизер налить раствор сульфата меди (II). Пропустить ток в течение 5 – 10 мин до появления заметного слоя розовой меди на катоде. Составить уравнение электродных реакций.

Наблюдение: на катоде выпадает осадок розоватого цвета – медь.

Уравнение реакции:

CuSO 4 ↔ Cu 2+ + SO 4 -

катод: Cu 2+ + 2e → Cu

анод: 2H 2 O – 4e → O 2 + 4H +

2Cu 2+ + 2H 2 O → 2Cu + O 2 + 4H +

2CuSO 4 + 2H 2 O → 2Cu + O 2 + 2H 2 SO 4

Электролиз раствора сульфата меди (II ) с использованием растворимого анода

Использовать электролизер с раствором и электродами после третьего опыта. Переключить полюса электродов на клеммах источника тока. После этого электрод, который был катодом, теперь будет являться анодом, а электрод, бывший анодом, будет катодом. Таким образом, электрод, покрытый в предыдущем опыте медью, будет выполнять в данном опыте роль растворимого анода. Электролиз проводить до полного растворения меди на аноде.

Что происходит на катоде? Написать уравнения реакций.

Наблюдение: с анода (бывший катод) в раствор переходит медь и ее ионы оседают на катоде (бывший анод).

Уравнение реакции:

CuSO 4 ↔ Cu 2+ + SO 4 -

катод: Cu 2+ + 2e → Cu

анод: Cu 2+ - 2e → Cu

Вывод: В ходе работы я пронаблюдала процесс электролиза и написала соответствующие уравнения реакций.

Модуль 2. Основные процессы химии и свойства веществ

Лабораторная работа № 7

Тема: Электролиз водных растворов солей

Электролизом называется окислительно-восстановительный процесс, протекающий на электродах при прохождении, электрического тока через раствор или расплав электролита.

При пропускании постоянного электрического тока через раствор электролита или расплав катионы движутся к катоду, а анионы - к аноду. На электродах протекают окислительнo- восстановительные процессы;. Катод, является восстановителем, так как он отдает электроны катионам, а анод - окислителем, так как ой принимает электроны у анионов. Реакции, протекающие на электродах, зависят от состава электролита, природы растворителя, материала электродов, режима работы электролизера.

Химизм процесса электролиза расплава хлорида кальция:

СаСl 2 ↔ Са 2+ + 2Сl -

на катоде Са 2+ + 2e→ Са°

на аноде 2Сl - - 2е→ 2С1° → С1 2

Электролиз раствора сульфата калия на нерастворимом аноде схематически выглядит так:

K 2 SO 4 ↔ 2K + + SO 4 2 -

Н 2 О ↔ Н + + ОН -

на катоде 2Н + + 2е→2Н°→ Н 2 2

на аноде 4ОН - 4е→ О 2 + 4Н + 1

K 2 SO 4 + 4Н 2 О 2Н 2 + О 2 + 2К0Н + H 2 SO 4

Цель работы: ознакомление с электролизом растворов солей.

Приборы и оборудование: выпрямитель электрического тока, электролизер, угольные электроды, наждачная бумага, стаканчики, промывалка.

Рис. 1. Прибор для проведения

электролиза

1 - электролизер;

2 - электроды;

3-токопроводящие проволоки; источник постоянного тока.

Реактивы и растворы: 5% растворы хлорида меди СuС1 2 , иодида калия КI, гидросульфата калия KHSO 4 , сульфата натрия Na 2 SO 4 , сульфата меди CuSO 4 , сульфата цинка ZnSO 4 , 20% раствор гидроксида натрия NaOH, медная и никелевая пластинки, раствор фенолфталеина, азотная кислота (конц.) HNO 3 , 1% раствор крахмала, нейтральная лакмусовая бумага, 10% раствор серной кислоты H 2 SO 4 .

Опыт 1. Электролиз хлорида меди с нерастворимыми электродами

Электролизер наполните до половины объема 5% раствором хлорида меди. Опустите в оба колена электролизера по графитовому стержню, закрепите их неплотно отрезкам и каучуковой трубки. Концы электродов соедините проводниками с источниками постоянного тока. При незначительном запахе хлора электролизер немедленно отключите от источника тока. Что происходит на катоде? Составьте уравнения электродных реакций.

Опыт 2. Электролиз иодида калия с нерастворимыми электродами

Наполните электролизер 5% раствором иодида калия, . прибавьте в каждое колено по 2 капли фенолфталеина. Вставьте в каждое колено электролизера графитовые электроды и соедините их с источником постоянного тока.

В каком колене и почему окрасился раствор? В каждое колено добавьте по 1 капле крахмального клейстера. Где и почему выделяется иод? Составьте уравнения электродных реакций. Что образовалось в катодном пространстве?

Опыт 3. Электролиз сульфата натрия с нерастворимыми электродами

Половину объема электролизера наполните 5% раствором сульфата натрия и добавьте в каждое колено по 2 капли метилоранжа.или лакмуса. Вставьте в оба колена электроды и соедините их с источником постоянного тока. Запишите ваши наблюдения. Почему растворы электролита у разных электродов окрасились в разные цвета? Составьте уравнения электродных реакций. Какие газы и почему выделяются на электродах? В чем заключается сущность процесса электролиза водного раствора сульфата натрия

Электролиз – это окислительно – восстановительные реакции, протекающие на электродах, если через расплав или раствор электролита пропускают постоянный электрический ток.

Катод – восстановитель, отдаёт электроны катионам.

Анод – окислитель, принимает электроны от анионов.

Ряд активности катионов:

Na + , Mg 2+ , Al 3+ , Zn 2+ , Ni 2+ , Sn 2+ , Pb 2+ , H + , Cu 2+ , Ag +

_____________________________→

Усиление окислительной способности

Ряд активности анионов:

I - , Br - , Cl - , OH - , NO 3 - , CO 3 2- , SO 4 2-

←__________________________________

Возрастание восстановительной способности

Процессы, протекающие на электродах при электролизе расплавов

(не зависят от материала электродов и природы ионов).

1. На аноде разряжаются анионы (A m - ; OH -

A m - - m ē → A °; 4 OH - - 4ē → O 2 + 2 H 2 O (процессы окисления).

2. На катоде разряжаются катионы (Me n + , H + ), превращаясь в нейтральные атомы или молекулы:

Me n + + n ē → Me ° ; 2 H + + 2ē → H 2 0 (процессы восстановления).

Процессы, протекающие на электродах при электролизе растворов

КАТОД (-)

Не зависят от материала катода; зависят от положения металла в ряду напряжений

АНОД (+)

Зависят от материала анода и природы анионов.

Анод нерастворимый (инертный), т.е. изготовлен из угля, графита, платины, золота .

Анод растворимый (активный), т.е. изготовлен из Cu , Ag , Zn , Ni , Fe и др. металлов (кроме Pt , Au )

1.В первую очередь восстанавливаются катионы металлов, стоящие в ряду напряжений после H 2 :

Me n+ +nē → Me°

1.В первую очередь окисляются анионы бескислородных кислот (кроме F - ):

A m- - mē → A°

Анионы не окисляются.

Идёт окисление атомов металла анода:

Me° - nē → Me n+

Катионы Me n + переходят в раствор.

Масса анода уменьшается.

2.Катионы металлов средней активности, стоящие между Al и H 2 , восстанавливаются одновременно с водой:

Me n+ + nē →Me°

2H 2 O + 2ē → H 2 + 2OH -

2.Анионы оксокислот (SO 4 2- , CO 3 2- ,..) и F - не окисляются, идёт окисление молекул H 2 O :

2H 2 O - 4ē → O 2 +4H +

3.Катионы активных металлов от Li до Al (включительно) не восстанавливаются, а восстанавливаются молекулы H 2 O :

2 H 2 O + 2ē →H 2 + 2OH -

3.При электролизе растворов щелочей окисляются ионы OH - :

4OH - - 4ē → O 2 +2H 2 O

4.При электролизе растворов кислот восстанавливаются катионы H + :

2H + + 2ē → H 2 0

ЭЛЕКТРОЛИЗ РАСПЛАВОВ

Задание 1 . Составьте схему электролиза расплава бромида натрия. (Алгоритм 1.)

Последовательность действий

Выполнение действий

NaBr → Na + + Br -

K - (катод ): Na + ,

A + (анод ): Br -

K + : Na + + 1ē → Na 0 (восстановление),

A + : 2 Br - - 2ē → Br 2 0 (окисление).

2NaBr = 2Na +Br 2

Задание 2 . Составьте схему электролиза расплава гидроксида натрия. (Алгоритм 2.)

Последовательность действий

Выполнение действий

NaOH → Na + + OH -

2.Показать перемещение ионов к соответствующим электродам

K - (катод ): Na + ,

A + (анод ): OH - .

3.Составить схемы процессов окисления и восстановления

K - : Na + + 1ē → Na 0 (восстановление),

A + : 4 OH - - 4ē → 2 H 2 O + O 2 (окисление).

4.Составить уравнение электролиза расплава щёлочи

4NaOH = 4Na + 2H 2 O + O 2

Задание 3. Составьте схему электролиза расплава сульфата натрия. (Алгоритм 3.)

Последовательность действий

Выполнение действий

1.Составить уравнение диссоциации соли

Na 2 SO 4 → 2Na + + SO 4 2-

2.Показать перемещение ионов к соответствующим электродам

K - (катод ): Na +

A + (анод ): SO 4 2-

K - : Na + + 1ē → Na 0 ,

A + : 2SO 4 2- - 4ē → 2SO 3 + O 2

4.Составить уравнение электролиза расплава соли

2Na 2 SO 4 = 4Na + 2SO 3 + O 2

ЭЛЕКТРОЛИЗ РАСТВОРОВ

Задание 1. Составить схему электролиза водного раствора хлорида натрия с использованием инертных электродов. (Алгоритм 1.)

Последовательность действий

Выполнение действий

1.Составить уравнение диссоциации соли

NaCl → Na + + Cl -

Ионы натрия в растворе не восстанавливаются, поэтому идёт восстановление воды. Ионы хлора окисляются.

3.Составить схемы процессов восстановления и окисления

K - : 2H 2 O + 2ē → H 2 + 2OH -

A + : 2Cl - - 2ē → Cl 2

2NaCl + 2H 2 O = H 2 + Cl 2 + 2NaOH

Задание 2. Составить схему электролиза водного раствора сульфата меди (II ) с использованием инертных электродов. (Алгоритм 2.)

Последовательность действий

Выполнение действий

1.Составить уравнение диссоциации соли

CuSO 4 → Cu 2+ + SO 4 2-

2. Выбрать ионы, которые будут разряжаться на электродах

На катоде восстанавливаются ионы меди. На аноде в водном растворе сульфат-ионы не окисляются, поэтому окисляется вода.

3.Составить схемы процессов восстановления и окисления

K - : Cu 2+ + 2ē → Cu 0

A + : 2H 2 O - 4ē → O 2 +4H +

4.Составить уравнение электролиза водного раствора соли

2CuSO 4 +2H 2 O = 2Cu + O 2 + 2H 2 SO 4

Задание 3. Составить схему электролиза водного раствора водного раствора гидроксида натрия с использованием инертных электродов. (Алгоритм 3.)

Последовательность действий

Выполнение действий

1.Составить уравнение диссоциации щёлочи

NaOH → Na + + OH -

2. Выбрать ионы, которые будут разряжаться на электродах

Ионы натрия не могут восстанавливаться, поэтому на катоде идёт восстановление воды. На аноде окисляются гидроксид-ионы.

3.Составить схемы процессов восстановления и окисления

K - : 2 H 2 O + 2ē → H 2 + 2 OH -

A + : 4 OH - - 4ē → 2 H 2 O + O 2

4.Составить уравнение электролиза водного раствора щёлочи

2 H 2 O = 2 H 2 + O 2 , т.е. электролиз водного раствора щёлочи сводится к электролизу воды.

Запомнить. При электролизе кислородсодержащих кислот (H 2 SO 4 и др .) , оснований (NaOH , Ca (OH ) 2 и др.) , солей активных металлов и кислородсодержащих кислот (K 2 SO 4 и др.) на электродах протекает электролиз воды: 2 H 2 O = 2 H 2 + O 2

Задание 4. Составить схему электролиза водного раствора нитрата серебра с использованием анода, изготовленного из серебра, т.е. анод – растворимый. (Алгоритм 4.)

Последовательность действий

Выполнение действий

1.Составить уравнение диссоциации соли

AgNO 3 → Ag + + NO 3 -

2. Выбрать ионы, которые будут разряжаться на электродах

На катоде восстанавливаются ионы серебра, серебряный анод растворяется.

3.Составить схемы процессов восстановления и окисления

K - : Ag + + 1ē→ Ag 0 ;

A + : Ag 0 - 1ē→ Ag +

4.Составить уравнение электролиза водного раствора соли

Ag + + Ag 0 = Ag 0 + Ag + электролиз сводится к переносу серебра с анода на катод.

Ко­то­рая про­те­ка­ет под дей­стви­ем элек­три­че­ско­го тока на элек­тро­дах, по­гру­жен­ных в рас­твор или рас­плав элек­тро­ли­та.

Су­ще­ству­ет два типа элек­тро­дов.

Анод окис­ле­ние .

Катод – это элек­трод, на ко­то­ром про­ис­хо­дит вос­ста­нов­ле­ние . К аноду стре­мят­ся ани­о­ны, так как он имеет по­ло­жи­тель­ный заряд. К ка­то­ду стре­мят­ся ка­ти­о­ны, по­то­му что он за­ря­жен от­ри­ца­тель­но и, со­глас­но за­ко­нам фи­зи­ки, раз­но­имен­ные за­ря­ды при­тя­ги­ва­ют­ся. В любом элек­тро­хи­ми­че­ском про­цес­се при­сут­ству­ют оба элек­тро­да. При­бор, в ко­то­ром осу­ществ­ля­ет­ся элек­тро­лиз, на­зы­ва­ет­ся элек­тро­ли­зер. Рис. 1.

Количественные характеристики электролиза выражаются двумя законами Фарадея :

1) Масса вещества, выделяющегося на электроде , прямо пропорциональна количеству электричества , прошедшего через электролит .

2) При электролизе различных химических соединений одинаковые количества электричества выделяют на электродах массы веществ, пропорциональные их электрохимическим эквивалентам .

Эти два закона можно объединить в одном уравнении:

где m – масса выделяющегося вещества, г;

n – количество электронов , переносимых в электродном процессе;

F – число Фарадея (F =96485 Кл/моль)

I – сила тока, А;

t – время, с;

M – молярная масса выделяющегося вещества, г/моль.

При электролизе водных растворов электродные процессы осложняются за счет конкуренции ионов (в электролизе могут участвовать и молекулы воды). Восстановление на катоде обусловлено положением металла в ряду стандартных электродных потенциалов.

Катионы металлов, у которых стандартный электродный потенциал больше, чем у водорода (от Cu2+ до Au3+), при электролизе практически полностью восстанавливается на катоде. Me n+ + nē →Me Катионы металлов с малой величиной стандартного электродного потенциала (Li2+ до Al3+ включительно) не восстанавливаются на катоде, а вместо них восстанавливаются молекулы воды. 2H2O + 2ē → H2 + 2OH- Катионы металлов, имеющих стандартный электродный потенциал меньше, чем у водорода, но больше чем у алюминия (от Mn2+ до Н), при электролизе на катоде восстанавливается одновременно с молекулами воды. Me n+ + nē →Me 2H2O + 2ē → H2 + 2OH- При наличии в растворе нескольких катионов, на катоде в первую очередь восстанавливаются катионы наименее активного металла.

Пример сульфат натрия(Na2SO4)

Na2SO4↔ 2Na++ SO42-

катод: 2H2O + 2e → H2 + 2OH-

анод: 2H2O - 4e → O2 + 4H+

4OH-- 4H+→ 4H2O

Электролизом расплавов получают многие реакционно-способные металлы. При диссоциации расплава сульфата натрия образуются ионы натрия и сульфат-ионы.

Na2SO4 → 2Na+ + SО42−

– на катоде выделяется натрий:

Na+ + 1 e− → Na

– на аноде выделяется кислород и оксид серы (VI):

2SО42− − 4 e− → 2SО3 +О2

– суммарное ионное уравнение реакции (уравнение катодного процесса помножили на 4)

4 Na+ + 2SО42− → 4 Na 0 + 2SО3 +О2

– суммарная реакция:

4 Na2SO44 Na 0 + 2SО3 +О2

Валентность