Математика для чайников. Матрицы и основные действия над ними

СЛОЖЕНИЕ МАТРИЦ.

Операция сложения вводится только для матриц одинакового размера.

ОПРЕДЕЛЕНИЕ Суммой двух матриц А = (а i j ) и В = (b i j ) одинакового размера называется матрица С = (с i j) того же размера, элементы которой равны суммам соответствующих элементов слагаемых матриц, т.е. с i j = a i j + b i j

Обозначается сумма матриц А + В.

УМНОЖЕНИЕ МАТРИЦ НА ДЕЙСТВИТЕЛЬНОЕ ЧИСЛО

ОПРЕДЕЛЕНИЕ Чтобы умножить матрицу на число k, надо умножить на это число каждый элемент матрицы:

если А= (а i j), то

СВОЙСТВА СЛОЖЕНИЯ МАТРИЦ И УМНОЖЕНИЯ НА ЧИСЛО

1. Переместительное свойство:

А + В = В + А

  • 2. Сочетательное свойство:
    • (А + В) + С = А + (В + С)
  • 3. Распределительное свойство:

k (A + B) = k A + k B,

где k - число

УМНОЖЕНИЕ МАТРИЦ

Матрицу А назовем согласованной с матрицей В, если число столбцов матрицы А равно числу строк матрицы В, т.е. для согласованных матриц матрица А имеет размер m n , матрица В имеет размер n k . Квадратные матрицы согласованы, если они одного порядка.

ОПРЕДЕЛЕНИЕ Произведением матрицы А размера m n на матрицу В размера n k называется матрица С размера m k, элемент которой а i j , расположенный в i -ой строке и j - ом столбце, равен сумме произведений элементов i - ой строки матрицы А на соответствующие элементы j - столбца матрицы В, т.е.

c i j = a i 1 b 1 j + a i 2 b 2 j +……+ a i n b n j

Обозначим: С = А В.

Произведение В А не имеет смысла, т.к. матрицы не согласованы.

ЗАМЕЧАНИЕ 1. Если А В имеет смысл, то В А может не иметь смысла.

ЗАМЕЧАНИЕ 2. Если имеет смысл А В и В А, то, вообще говоря

т.е. умножение матриц не обладает переместительным законом.

ЗАМЕЧАНИЕ 3. Если А - квадратная матрица и Е - единичная матрица того же порядка, то

А Е = Е А = А.

Отсюда следует, что единичная матрица при умножении играет роль единицы.

ПРИМЕРЫ. Найти, если можно, А В и В А.

Решение: Квадратные матрицы одного и того же второго порядка согласованы в томи другом порядке, поэтому А В и В А существуют.

Решение: Матрицы А и В согласованы

Матрицы В и А не согласованы, поэтому В А не имеет смысла.

Отметим, что в результате перемножения двух матриц получается матрица, содержащая столько строк, сколько их имеет матрица-множимое и столько столбцов, сколько их имеет матрица-множитель.


В этой статье мы разберемся как проводится операция сложения над матицами одного порядка, операция умножения матрицы на число и операция умножения матриц подходящего порядка, аксиоматически зададим свойства операций, а также обсудим приоритет операций над матрицами. Параллельно с теорией будем приводить подробные решения примеров, в которых выполняются операции над матрицами.

Сразу заметим, что все нижесказанное относится к матрицам, элементами которых являются действительные (или комплексные) числа.

Навигация по странице.

Операция сложения двух матриц.

Определение операции сложения двух матриц.

Операция сложения определена ТОЛЬКО ДЛЯ МАТРИЦ ОДНОГО ПОРЯДКА. Другими словами, нельзя найти сумму матриц разной размерности и вообще нельзя говорить о сложении матриц разной размерности. Также нельзя говорить о сумме матрицы и числа или о сумме матрицы и какого-нибудь другого элемента.

Определение.

Сумма двух матриц и - это матрица, элементы которой равны сумме соответствующих элементов матриц А и В , то есть, .


Таким образом, результатом операции сложения двух матриц является матрица того же порядка.

Свойства операции сложения матриц.

Какими же свойствами обладает операция сложения матриц? На этот вопрос достаточно легко ответить, отталкиваясь от определения суммы двух матриц данного порядка и вспомнив свойства операции сложения действительных (или комплексных) чисел.

  1. Для матриц А , В и С одного порядка характерно свойство ассоциативности сложения А+(В+С)=(А+В)+С .
  2. Для матриц данного порядка существует нейтральный элемент по сложению, которым является нулевая матрица. То есть, справедливо свойство А+О=А .
  3. Для ненулевой матрицы А данного порядка существует матрица (–А) , их суммой является нулевая матрица: А+(-А)=О .
  4. Для матриц А и В данного порядка справедливо свойство коммутативности сложения А+В=В+А .

Следовательно, множество матриц данного порядка порождает аддитивную группу Абеля (абелеву группу относительно алгебраической операции сложения).

Сложение матриц - решения примеров.

Рассмотрим несколько примеров сложения матриц.

Пример.

Найдите сумму матриц и .

Решение.

Порядки матриц А и В совпадают и равны 4 на 2 , поэтому мы можем проводить операцию сложения матриц и в результате должны получить матрицу порядка 4 на 2 . Согласно определению операции сложения двух матриц, сложение производим поэлементно:

Пример.

Найдите сумму двух матриц и элементами которых являются комплексные числа.

Решение.

Так как порядки матриц равны, то мы можем выполнить сложение.

Пример.

Выполните сложение трех матриц .

Решение.

Сначала сложим матрицу А с В , затем к полученной матрице прибавим С :

Получили нулевую матрицу.

Операция умножения матрицы на число.

Определение операции умножения матрицы на число.

Операция умножения матрицы на число определена ДЛЯ МАТРИЦ ЛЮБОГО ПОРЯДКА.

Определение.

Произведение матрицы и действительного (или комплексного) числа - это матрица, элементы которой получаются умножением соответствующих элементов исходной матрицы на число , то есть, .

Таким образом, результатом умножения матрицы на число является матрица того же порядка.

Свойства операции умножения матрицы на число.

Из свойств операции умножения матрицы на число следует, что умножение нулевой матрицы на число ноль даст нулевую матрицу, а произведение произвольного числа и нулевой матрицы есть нулевая матрица.

Умножение матрицы на число - примеры и их решение.

Разберемся с проведением операция умножения матрицы на число на примерах.

Пример.

Найдите произведение числа 2 и матрицы .

Решение.

Чтобы умножить матрицу на число, нужно каждый ее элемент умножить на это число:

Пример.

Выполните умножение матрицы на число .

Решение.

Умножаем каждый элемент заданной матрицы на данное число:

Операция умножения двух матриц.

Определение операции умножения двух матриц.

Операция умножения двух матриц А и В определяется только для случая, когда ЧИСЛО СТОЛБЦОВ МАТРИЦЫ А РАВНО ЧИСЛУ СТРОК МАТРИЦЫ В .

Определение.

Произведение матрицы А порядка и матрицы В порядка - это такая матрица С порядка , каждый элемент которой равен сумме произведений элементов i-ой строки матрицы А на соответствующие элементы j-ого столбца матрицы В , то есть,


Таким образом, результатом операции умножения матрицы порядка на матрицу порядка является матрица порядка .

Умножение матрицы на матрицу - решения примеров.

Разберемся с умножением матриц на примерах, после этого перейдем к перечислению свойств операции умножения матриц.

Пример.

Найдите все элементы матрицы С , которая получается при умножении матриц и .

Решение.

Порядок матрицы А равен p=3 на n=2 , порядок матрицы В равен n=2 на q=4 , следовательно, порядок порядок произведения этих матриц будет p=3 на q=4 . Воспользуемся формулой

Последовательно принимаем значения i от 1 до 3 (так как p=3 ) для каждого j от 1 до 4 (так как q=4 ), а n=2 в нашем случае, тогда

Так вычислены все элементы матрицы С , и матрица, полученная при умножении двух заданных матриц, имеет вид .

Пример.

Выполните умножение матриц и .

Решение.

Порядки исходных матриц позволяют провести операцию умножения. В результате мы должны получить матрицу порядка 2 на 3.

Пример.

Даны матрицы и . Найдите произведение матриц А и В , а также матриц В и А .

Решение.

Так как порядок матрицы А равен 3 на 1 , а матрицы В равен 1 на 3 , то А⋅В будет иметь порядок 3 на 3 , а произведение матриц В и A будет иметь порядок 1 на 1 .

Как видите, . Это одно из свойств операции умножения матриц.

Свойства операции умножения матриц.

Если матрицы А , В и С подходящих порядков, то справедливы следующие свойства операции умножения матриц .

Следует отметить, что при подходящих порядках произведение нулевой матрицы О на матрицу А дает нулевую матрицу. Произведение А на О также дает нулевую матрицу, если порядки позволяют проводить операцию умножения матриц.

Среди квадратных матриц существуют так называемые перестановочные матрицы , операция умножения для них коммутативна, то есть . Примером перестановочных матриц является пара единичной матрицы и любой другой матрицы того же порядка, так как справедливо .

Приоритет операций над матрицами.

Операции умножения матрицы на число и умножения матрицы на матрицу наделены равным приоритетом. В то же время эти операции имеют приоритет выше, чем операция сложения двух матриц. Таким образом, сначала выполняется умножение матрицы на число и умножение матриц, а уже потом производится сложение матриц. Однако, порядок выполнения операций над матрицами может быть задан явно с помощью скобок.

Итак, приоритет операций над матрицами аналогичен приоритету, присвоенному операциям сложения и умножения действительных чисел.

Пример.

Даны матрицы . Выполните с заданными матрицами указанные действия .

Решение.

Начинаем с умножения матрицы А на матрицу В :

Теперь умножаем единичную матрицу второго порядка Е на два:

Складываем две полученные матрицы:

Осталось выполнить операцию умножения полученной матрицы на матрицу А :

Следует заметить, что операции вычитания матриц одного порядка А и В как таковой не существует. Разность двух матриц по сути есть сумма матрицы А и матрицы В , предварительно умноженной на минус единицу: .

Операция возведения квадратной матрицы в натуральную степень так же не самостоятельна, так как является последовательным умножением матриц.

Подведем итог.

На множестве матриц определены три операции: сложение матриц одного порядка, умножение матрицы на число и умножение матриц подходящих порядков. Операция сложения на множестве матриц данного порядка порождает группу Абеля.

Способ 1

Рассмотрим матрицу А размерностью 3х4 . Умножим эту матрицу на число k . При умножении матрицы на число получается матрица такой же размерности, что и исходная, при этом каждый элемент матрицы А умножается на число k .

Введем элементы матрицы в диапазон В3:Е5 , а число k — в ячейку Н4 . В диапазоне К3: N 5 вычислим матрицу В , полученную при умножении матрицы А на число k : В=А* k . Для этого введем формулу =B3*$H$4 в ячейку K 3 , где В3 — элемент а 11 матрицы А .

Примечание: адрес ячейки H 4 вводим как абсолютную ссылку, чтобы при копировании формулы ссылка не менялась.

С помощью маркера автозаполнения копируем формулу ячейки К3 В .

Таким образом, мы умножили матрицу А в Excel и получим матрицу В .

Для деления матрицы А на число k в ячейку K 3 введем формулу =B3/$H$4 В .

Способ 2

Этот способ отличается тем, что результат умножения/деления матрицы на число сам является массивом. В этом случае нельзя удалить элемент массива.

Для деления матрицы на число этим способом выделяем диапазон, в котором будет вычислен результат, вводим знак «=», выделяем диапазон, содержащий исходную матрицу А, нажимаем на клавиатуре знак умножить (*) и выделяем ячейку с числом k Ctrl+ Shift+ Enter


Для выполнения деления в данном примере в диапазон вводим формулу =B3:E5/H4, т.е. знак «*» меняем на «/».

Сложение и вычитание матриц в Excel

Способ 1

Следует отметить, что складывать и вычитать можно матрицы одинаковой размерности (одинаковое количество строк и столбцов у каждой из матриц). Причем каждый элемент результирующей матрицы С будет равен сумме соответствующих элементов матриц А и В , т.е. с ij = а ij + b ij .

Рассмотрим матрицы А и В размерностью 3х4 . Вычислим сумму этих матриц. Для этого в ячейку N 3 введем формулу =B3+H3 , где B3 и H3 - первые элементы матриц А и В соответственно. При этом формула содержит относительные ссылки (В3 и H 3 ), чтобы при копировании формулы на весь диапазон матрицы С они могли измениться.

С помощью маркера автозаполнения скопируем формулу из ячейки N 3 вниз и вправо на весь диапазон матрицы С .

Для вычитания матрицы В из матрицы А (С=А - В ) в ячейку N 3 введем формулу =B3 — H3 и скопируем её на весь диапазон матрицы С .

Способ 2

Этот способ отличается тем, что результат сложения/вычитания матриц сам является массивом. В этом случае нельзя удалить элемент массива.

Для деления матрицы на число этим способом выделяем диапазон, в котором будет вычислен результат, вводим знак «=», выделяем диапазон, содержащий первую матрицу А , нажимаем на клавиатуре знак сложения (+) и выделяем вторую матрицу В . После ввода формулы нажимаем сочетание клавиш Ctrl+ Shift+ Enter , чтобы значениями заполнился весь диапазон.

Умножение матриц в Excel

Следует отметить, что умножать матрицы можно только в том случае, если количество столбцов первой матрицы А равно количеству строк второй матрицы В .

Рассмотрим матрицы А размерностью 3х4 и В размерностью 4х2 . При умножении этих матриц получится матрица С размерностью 3х2.

Вычислим произведение этих матриц С=А*В с помощью встроенной функции =МУМНОЖ() . Для этого выделим диапазон L 3: M 5 — в нём будут располагаться элементы матрицы С , полученной в результате умножения. На вкладке Формулы выберем Вставить функцию .

В диалоговом окне Вставка функции выберем Категория Математические — функция МУМНОЖ ОК .

В диалоговом окне Аргументы функции выберем диапазоны, содержащие матрицы А и В . Для этого напротив массива1 щёлкнем по красной стрелке.

А (имя диапазона появится в строке аргументов), и щелкнем по красной стрелке.

Для массива2 выполним те же действия. Щёлкнем по стрелке напротив массива2.

Выделим диапазон, содержащий элементы матрицы В , и щелкнем по красной стрелке.

В диалоговом окне рядом со строками ввода диапазонов матриц появятся элементы матриц, а внизу — элементы матрицы С . После ввода значений нажимаем на клавиатуре сочетание клавиш Shift + Ctrl ОК .

ВАЖНО. Если просто нажать ОК С .

Мы получим результат умножения матриц А и В .

Мы можем изменить значения ячеек матриц А и В , значения матрицы С поменяются автоматически.

Транспонирование матрицы в Excel

Транспонирование матрицы — операция над матрицей, при которой столбцы заменяются строками с соответствующими номерами. Обозначим транспонированную матрицу А Т .

Пусть дана матрица А размерностью 3х4 , с помощью функции =ТРАНСП() вычислим транспонированную матрицу А Т , причем размерность этой матрицы будет 4х3 .

Выделим диапазон Н3: J 6 , в который будут введены значения транспонированной матрицы.

На вкладке Формулы выберем Вставить функцию, выберем категорию Ссылки и массивы — функция ТРАНСП ОК .

В диалоговом окне Аргументы функции указываем диапазон массива В3:Е5 А Shift + Ctrl и щелкаем левой кнопкой мыши по кнопке ОК .

ВАЖНО. Если просто нажать ОК , то программа вычислит значение только первой ячейки диапазона матрицы А Т .

Нажмите для увеличения

Мы получили транспонированную матрицу.

Нахождение обратной матрицы в Excel

Матрица А -1 называется обратной для матрицы А , если А ž А -1 =А -1 ž А=Е , где Е — единичная матрица. Следует отметить, что обратную матрицу можно найти только для квадратной матрицы (одинаковое количество строк и столбцов).

Пусть дана матрица А размерностью 3х3 , найдем для неё обратную матрицу с помощью функции =МОБР() .

Для этого выделим диапазон G 3: I 5 , который будет содержать элементы обратной матрицы, на вкладке Формулы выберем Вставить функцию .

В диалоговом окне Вставка функции выберем категорию Математические — функция МОБР ОК .

В диалоговом окне Аргументы функции указываем диапазон массива В3: D 5 , содержащего элементы матрицы А . Нажимаем на клавиатуре сочетание клавиш Shift + Ctrl и щелкаем левой кнопкой мыши по кнопке ОК .

ВАЖНО. Если просто нажать ОК , то программа вычислит значение только первой ячейки диапазона матрицы А -1 .

Нажмите для увеличения

Мы получили обратную матрицу.

Нахождение определителя матрицы в Excel

Определитель матрицы — это число, которое является важной характеристикой квадратной матрицы.

Как найти определить матрицы в Excel

Пусть дана матрица А размерностью 3х3 , вычислим для неё определитель с помощью функции =МОПРЕД() .

Для этого выделим ячейку Н4 , в ней будет вычислен определитель матрицы, на вкладке Формулы выберем Вставить функцию .

В диалоговом окне Вставка функции выберем категорию Математические — функция МОПРЕД ОК .

В диалоговом окне Аргументы функции указываем диапазон массива В3: D 5 , содержащего элементы матрицы А . Нажимаем ОК .

Нажмите для увеличения

Мы вычислили определитель матрицы А .

В заключение обратим внимание на важный момент. Он касается тех операций над матрицами, для которых мы использовали встроенные в программу функции, а в результате получали новую матрицу (умножение матриц, нахождение обратной и транспонированной матриц). В матрице, которая получилась в результате операции, нельзя удалить часть элементов. Т.е. если мы выделим, например, один элемент матрицы и нажмём Del , то программа выдаст предупреждение: Нельзя изменять часть массива .

Нажмите для увеличения

Мы можем удалить только все элементы этой матрицы.

Видеоурок

— учитель физики, информатики и ИКТ, МКОУ "СОШ", с. Саволенка Юхновского района Калужской области. Автор и преподаватель дистанционных курсов по основам компьютерной грамотности, офисным программам. Автор статей, видеоуроков и разработок.


Данное методическое пособие поможет Вам научиться выполнять действия с матрицами : сложение (вычитание) матриц, транспонирование матрицы, умножение матриц, нахождение обратной матрицы. Весь материал изложен в простой и доступной форме, приведены соответствующие примеры, таким образом, даже неподготовленный человек сможет научиться выполнять действия с матрицами. Для самоконтроля и самопроверки Вы можете бесплатно скачать матричный калькулятор >>> .

Я буду стараться минимизировать теоретические выкладки, кое-где возможны объяснения «на пальцах» и использование ненаучных терминов. Любители основательной теории, пожалуйста, не занимайтесь критикой, наша задача – научиться выполнять действия с матрицами .

Для СВЕРХБЫСТРОЙ подготовки по теме (у кого «горит») есть интенсивный pdf-курс Матрица, определитель и зачёт!

Матрица – это прямоугольная таблица каких-либо элементов . В качестве элементов мы будем рассматривать числа, то есть числовые матрицы. ЭЛЕМЕНТ – это термин. Термин желательно запомнить, он будет часто встречаться, не случайно я использовал для его выделения жирный шрифт.

Обозначение: матрицы обычно обозначают прописными латинскими буквами

Пример: рассмотрим матрицу «два на три»:

Данная матрица состоит из шести элементов :

Все числа (элементы) внутри матрицы существуют сами по себе, то есть ни о каком вычитании речи не идет:

Это просто таблица (набор) чисел!

Также договоримся не переставлять числа, если иного не сказано в объяснениях. У каждого числа свое местоположение, и перетасовывать их нельзя!

Рассматриваемая матрица имеет две строки:

и три столбца:

СТАНДАРТ : когда говорят о размерах матрицы, то сначала указывают количество строк, а только потом – количество столбцов. Мы только что разобрали по косточкам матрицу «два на три».

Если количество строк и столбцов матрицы совпадает, то матрицу называют квадратной , например: – матрица «три на три».

Если в матрице один столбец или одна строка , то такие матрицы также называют векторами .

На самом деле понятие матрицы мы знаем еще со школы, рассмотрим, например точку с координатами «икс» и «игрек»: . По существу, координаты точки записаны в матрицу «один на два». Кстати, вот Вам и пример, почему порядок чисел имеет значение: и – это две совершенно разные точки плоскости.

Теперь переходим непосредственно к изучению действий с матрицами :

1) Действие первое. Вынесение минуса из матрицы (внесение минуса в матрицу) .

Вернемся к нашей матрице . Как вы наверняка заметили, в данной матрице слишком много отрицательных чисел. Это очень неудобно с точки зрения выполнения различных действий с матрицей, неудобно писать столько минусов, да и просто в оформлении некрасиво выглядит.

Вынесем минус за пределы матрицы, сменив у КАЖДОГО элемента матрицы знак :

У нуля, как Вы понимаете, знак не меняется, ноль – он и в Африке ноль.

Обратный пример: . Выглядит безобразно.

Внесем минус в матрицу, сменив у КАЖДОГО элемента матрицы знак :

Ну вот, гораздо симпатичнее получилось. И, самое главное, выполнять какие-либо действия с матрицей будет ПРОЩЕ. Потому что есть такая математическая народная примета: чем больше минусов – тем больше путаницы и ошибок .

2) Действие второе. Умножение матрицы на число .

Пример:

Всё просто, для того чтобы умножить матрицу на число, нужно каждый элемент матрицы умножить на данное число. В данном случае – на тройку.

Еще один полезный пример:

– умножение матрицы на дробь

Сначала рассмотрим то, чего делать НЕ НАДО :

Вносить дробь в матрицу НЕ НУЖНО, во-первых, это только затрудняет дальнейшие действия с матрицей, во-вторых, затрудняет проверку решения преподавателем (особенно, если – окончательный ответ задания).

И, тем более, НЕ НАДО делить каждый элемент матрицы на минус семь:

Из статьи Математика для чайников или с чего начать , мы помним, что десятичных дробей с запятой в высшей математике стараются всячески избегать.

Единственное, что желательно сделать в этом примере – это внести минус в матрицу:

А вот если бы ВСЕ элементы матрицы делились на 7 без остатка , то тогда можно (и нужно!) было бы поделить.

Пример:

В этом случае можно и НУЖНО умножить все элементы матрицы на , так как все числа матрицы делятся на 2 без остатка .

Примечание: в теории высшей математики школьного понятия «деление» нет. Вместо фразы «это поделить на это» всегда можно сказать «это умножить на дробь». То есть, деление – это частный случай умножения.

3) Действие третье. Транспонирование матрицы .

Для того чтобы транспонировать матрицу, нужно ее строки записать в столбцы транспонированной матрицы.

Пример:

Транспонировать матрицу

Строка здесь всего одна и, согласно правилу, её нужно записать в столбец:

– транспонированная матрица.

Транспонированная матрица обычно обозначается надстрочным индексом или штрихом справа вверху.

Пошаговый пример:

Транспонировать матрицу

Сначала переписываем первую строку в первый столбец:

Потом переписываем вторую строку во второй столбец:

И, наконец, переписываем третью строку в третий столбец:

Готово. Грубо говоря, транспонировать – это значит повернуть матрицу набок.

4) Действие четвертое. Сумма (разность) матриц .

Сумма матриц действие несложное.
НЕ ВСЕ МАТРИЦЫ МОЖНО СКЛАДЫВАТЬ. Для выполнения сложения (вычитания) матриц, необходимо, чтобы они были ОДИНАКОВЫМИ ПО РАЗМЕРУ.

Например, если дана матрица «два на два», то ее можно складывать только с матрицей «два на два» и никакой другой!

Пример:

Сложить матрицы и

Для того чтобы сложить матрицы, необходимо сложить их соответствующие элементы :

Для разности матриц правило аналогичное, необходимо найти разность соответствующих элементов .

Пример:

Найти разность матриц ,

А как решить данный пример проще, чтобы не запутаться? Целесообразно избавиться от лишних минусов, для этого внесем минус в матрицу :

Примечание: в теории высшей математики школьного понятия «вычитание» нет. Вместо фразы «из этого вычесть это» всегда можно сказать «к этому прибавить отрицательное число». То есть, вычитание – это частный случай сложения.

5) Действие пятое. Умножение матриц .

Какие матрицы можно умножать?

Чтобы матрицу можно было умножить на матрицу нужно, чтобы число столбцов матрицы равнялось числу строк матрицы .

Пример:
Можно ли умножить матрицу на матрицу ?

Значит, умножать данные матрицы можно.

А вот если матрицы переставить местами, то, в данном случае, умножение уже невозможно!

Следовательно, выполнить умножение невозможно:

Не так уж редко встречаются задания с подвохом, когда студенту предлагается умножить матрицы, умножение которых заведомо невозможно.

Следует отметить, что в ряде случаев можно умножать матрицы и так, и так.
Например, для матриц, и возможно как умножение , так и умножение

Введение

матица порядок аксиоматический умножение

Операции над матрицами, свойства операций.

В этой статье мы разберемся как проводится операция сложения над матицами одного порядка, операция умножения матрицы на число и операция умножения матриц подходящего порядка, аксиоматически зададим свойства операций, а также обсудим приоритет операций над матрицами. Параллельно с теорией будем приводить подробные решения примеров, в которых выполняются операции над матрицами.

Сразу заметим, что все нижесказанное относится к матрицам, элементами которых являются действительные (или комплексные) числа.

Операция сложения двух матриц

Определение операции сложения двух матриц.

Операция сложения определена ТОЛЬКО ДЛЯ МАТРИЦ ОДНОГО ПОРЯДКА. Другими словами, нельзя найти сумму матриц разной размерности и вообще нельзя говорить о сложении матриц разной размерности. Также нельзя говорить о сумме матрицы и числа или о сумме матрицы и какого-нибудь другого элемента.

Определение.

Сумма двух матриц и - это матрица, элементы которой равны сумме соответствующих элементов матриц А и В, то есть, .


Таким образом, результатом операции сложения двух матриц является матрица того же порядка.

Свойства операции сложения матриц.

Какими же свойствами обладает операция сложения матриц? На этот вопрос достаточно легко ответить, отталкиваясь от определения суммы двух матриц данного порядка и вспомнив свойства операции сложения действительных (или комплексных) чисел.

Для матриц А, В и С одного порядка характерно свойство ассоциативности сложения А+(В+С)=(А+В)+С.

Для матриц данного порядка существует нейтральный элемент по сложению, которым является нулевая матрица. То есть, справедливо свойство А+О=А.

Для ненулевой матрицы А данного порядка существует матрица (-А), их суммой является нулевая матрица: А+(-А)=О.

Для матриц А и В данного порядка справедливо свойство коммутативности сложения А+В=В+А.

Следовательно, множество матриц данного порядка порождает аддитивную группу Абеля (абелеву группу относительно алгебраической операции сложения).

Операция умножения матрицы на число

Определение операции умножения матрицы на число.

Операция умножения матрицы на число определена ДЛЯ МАТРИЦ ЛЮБОГО ПОРЯДКА.

Определение.

Произведение матрицы и действительного (или комплексного) числа - это матрица, элементы которой получаются умножением соответствующих элементов исходной матрицы на число, то есть, .

Таким образом, результатом умножения матрицы на число является матрица того же порядка.

Свойства операции умножения матрицы на число.

Для матриц одного порядка А и В, а также произвольного действительного (или комплексного) числа справедливо свойство дистрибутивности умножения относительно сложения.

Для произвольной матрицы А и любых действительных (или комплексных) чисел и выполняется свойство дистрибутивности.

Для произвольной матрицы А и любых действительных (или комплексных) чисел и справедливо свойство ассоциативности умножения.

Нейтральным числом по умножению на произвольную матрицу А является единица, то есть, .

Из свойств операции умножения матрицы на число следует, что умножение нулевой матрицы на число ноль даст нулевую матрицу, а произведение произвольного числа и нулевой матрицы есть нулевая матрица.

Умножение матрицы на число - примеры и их решение.

Разберемся с проведением операция умножения матрицы на число на примерах.

Найдите произведение числа 2 и матрицы.

Чтобы умножить матрицу на число, нужно каждый ее элемент умножить на это число:


Выполните умножение матрицы на число.

Умножаем каждый элемент заданной матрицы на данное число:


Операция умножения двух матриц

Определение операции умножения двух матриц.

Операция умножения двух матриц А и В определяется только для случая, когда ЧИСЛО СТОЛБЦОВ МАТРИЦЫ А РАВНО ЧИСЛУ СТРОК МАТРИЦЫ В.

Определение. Произведение матрицы А порядка и матрицы В порядка - это такая матрица С порядка, каждый элемент которой равен сумме произведений элементов i-ой строки матрицы А на соответствующие элементы j-ого столбца матрицыВ, то есть,


Таким образом, результатом операции умножения матрицы порядка на матрицу порядка является матрица порядка.

Умножение матрицы на матрицу - решения примеров.

Разберемся с умножением матриц на примерах, после этого перейдем к перечислению свойств операции умножения матриц.

Найдите все элементы матрицы С, которая получается при умножении матриц и.

Порядок матрицы А равен p=3 на n=2, порядок матрицы В равен n=2 на q=4, следовательно, порядок порядок произведения этих матриц будет p=3 на q=4. Воспользуемся формулой

Последовательно принимаем значения i от 1 до 3 (так как p=3) для каждого j от 1 до 4(так как q=4), а n=2 в нашем случае, тогда


Так вычислены все элементы матрицы С, и матрица, полученная при умножении двух заданных матриц, имеет вид.

Выполните умножение матриц и.

Порядки исходных матриц позволяют провести операцию умножения. В результате мы должны получить матрицу порядка 2 на 3.


Даны матрицы и. Найдите произведение матриц А и В, а также матриц В и А.

Так как порядок матрицы А равен 3 на 1, а матрицы В равен 1 на 3, то А?В будет иметь порядок 3 на 3, а произведение матриц В и A будет иметь порядок 1 на 1.


Как видите, . Это одно из свойств операции умножения матриц.

Свойства операции умножения матриц.

Если матрицы А, В и С подходящих порядков, то справедливы следующие свойства операции умножения матриц.

Свойство ассоциативности умножения матриц.

Два свойства дистрибутивности и.

В общем случае операция умножения матриц некоммутативна.

Единичная матрица Е порядка n на n является нейтральным элементом по умножению, то есть, для произвольной матрицы А порядка p на n справедливо равенство, а для произвольной матрицы А порядка n на p - равенство.

Следует отметить, что при подходящих порядках произведение нулевой матрицы О на матрицу А дает нулевую матрицу. Произведение А на О также дает нулевую матрицу, если порядки позволяют проводить операцию умножения матриц.

Среди квадратных матриц существуют так называемые перестановочные матрицы, операция умножения для них коммутативна, то есть. Примером перестановочных матриц является пара единичной матрицы и любой другой матрицы того же порядка, так как справедливо.

Степень окисления