Гомеостатические процессы. Понятие о гомеостазе

Положительная обратная связь способствует рождению ребенка. В самом начале родов сокращения матки относительно слабые и редкие. По мере возрастания интенсивности различных процессов во время родов их сила и частота постепенно увеличиваются. Однако, после того как ребенок родился, схватки моментально прекращаются.

В нашей жизни постоянно происходят разного рода изменения, в том числе и биологические. Триллионы наших клеток обеспечивают собственную жизнедеятельность, поддерживая тем самым нормальную работу всего организма. Для этого они постоянно используют необходимые питательные вещества и кислород и избавляются от продуктов жизнедеятельности. Другими словами, каждая клетка организма является как бы островом, население которого добывает необходимое из окружающих вод и сбрасывает в них отходы. Эти «воды» - внеклеточная жидкость - состоят из компонента плазмы крови и тонкого слоя жидкости, омывающей каждую клетку. Вместе эти компоненты образуют то, что физиологи называют внутренней средой организма.

Поскольку клетки избавляются от одних веществ и вырабатывают другие, состав внеклеточной жидкости непостоянен. Такие беспрестанные изменения потенциально опасны: без механизмов, предотвращающих резкие сдвиги, дисбаланс, клетка погибла бы от недостатка необходимых веществ или от ее переполнения продуктами жизнедеятельности.

Для нашего выживания также важны и механизмы, компенсирующие изменения температуры и других факторов окружающей среды. Фактически наши системы органов постоянно приспосабливаются, чтобы поддерживать необходимое химическое равновесие во внутренней среде организма. Это динамическое равновесие называется гомеостазом. С помощью механизмов обратной связи, обеспечивающих постоянное обновление информации для мозга и других органов, наш организм контролирует изменяющиеся условия и приспосабливается к ним для продолжения жизни.

Механизм отрицательной обратной связи задействован в регуляции кровяного давления. Когда оно возрастает выше нормальных значений, это регистрируют расположенные в некоторых сосудах рецепторы (барорецепторы) и передают информацию в сосудистый центр головного мозга. В результате происходит замедление частоты сердечных сокращений и расширение артериол. Если рецепторы отмечают падение давления, эти параметры изменяются в противоположную сторону.

МЕХАНИЗМ ОБРАТНОЙ СВЯЗИ

В управлении гомеостазом широко задействован механизм обратной связи. С его помощью такие центры контроля, как головной мозг, получают информацию о различных изменениях и обеспечивают приспосабливание к ним организма.

Регуляция уровня сахара в крови, частоты сердечных сокращений и многих других функций организма происходит по механизму отрицательной обратной связи. В этом случае изменение какого-либо показателя, например кровяного давления, приводит к тому, что деятельность всего организма направлена на возвращение его в норму. Механизм обратной связи часто сравнивают с домашним термостатом. Датчик регистрирует падение температуры ниже заданного уровня и передает эту информацию на контролирующее устройство, которое включает систему обогревания для достижения нужного уровня температуры.

Некоторые функции регулируются механизмом положительной обратной связи. При этом происходящие процессы как бы подстегивают сами себя, пока какое-нибудь другое событие не приведет к их прекращению. Примером положительной обратной связи является процесс родовой деятельности, кульминацией которой является рождение ребенка.

Жизнь требует поддержания равновесия. Разнообразные функции организма, такие как прием и переваривание пищи, дыхание, образование и выведение мочи и прочих продуктов жизнедеятельности, а также адаптация к изменяющейся температуре способствуют обеспечению постоянного состава внеклеточной жидкости.

Заболевание мозга может нарушить гомеостаз. На томографическом изображении показана большая злокачественная опухоль головного мозга (розовый цвет). Из-за того что мозг отвечает за множество процессов, регулируемых с помощью механизма обратной связи, подобные заболевания могут приводить к прогрессирующему ограничению способности мозга контролировать функции органов и систем.


Гомеостаз - поддержание внутренней среды организма

Мир вокруг нас постоянно изменяется. Зимние ветры заставляют нас надевать теплое платье и перчатки, а центральное отопление побуждает снимать их. Летнее солнце уменьшает потребность в сохранении тепла, по крайней мере до тех пор, пока эффективная работа кондиционера не приведет к противоположному результату. И все-таки независимо от температуры окружающей среды индивидуальная температура тела у знакомых вам здоровых людей вряд ли будет различаться намного больше, чем на одну десятую градуса. У человека и других теплокровных животных температура внутренних областей тела удерживается на постоянном уровне где-то около 37° С, хотя она может несколько подниматься и опускаться в связи с суточным ритмом.

Большинство людей питается по-разному. Одни предпочитают хороший завтрак, легкий ленч и плотный обед с обязательным десертом. Другие не едят почти целый день, но в полдень любят хорошенько перекусить и немного вздремнуть. Одни только и делают, что жуют, других еда как будто вообще не волнует. И тем не менее если измерить содержание сахара в крови у учеников вашего класса, то оно у всех окажется близким к 0,001 г (1 мг) на один миллилитр крови, несмотря на большую разницу в пищевом рационе и в распределении приемов пищи.

Точное регулирование температуры тела и содержания глюкозы в крови - это всего лишь два примера важнейших функций, находящихся под контролем нервной системы. Состав жидкостей, окружающих все наши клетки, непрерывно регулируется, что позволяет обеспечить его поразительное постоянство.

Поддержание постоянства внутренней среды организма называется гомеостазом (homeo - такой же, сходный; stasis -стабильность, равновесие). Главную ответственность за гомеостатическую регуляцию несут вегетативный (автономный) и кишечный отделы периферической нервной системы, а также центральная нервная система, отдающая организму приказы через гипофиз и другие эндокринные органы. Действуя совместно, эти системы согласовывают потребности тела с условиями окружающей среды. (Если это утверждение покажется вам знакомым, вспомните, что точно такими же словами мы охарактеризовали главную функцию мозга.)

Французский физиолог Клод Бернар, живший в XIX веке и целиком посвятивший себя изучению процессов пищеварения и регуляции кровотока, рассматривал жидкости тела как «внутреннюю среду» (milieu interne ). У разных организмов концентрация определенных солей и нормальная температура могут быть несколько различными, но в пределах вида внутренняя среда индивидуумов соответствует характерным для этого вида стандартам. Допускаются лишь кратковременные и не очень большие отклонения от этих стандартов, иначе организм не может оставаться здоровым и способствовать выживанию вида. Уолтер Б. Кэннон, крупнейший американский физиолог середины нашего столетия, расширил концепцию Бернара о внутренней среде. Он считал, что независимость индивидуума от непрерывных изменений внешних условий обеспечивается работой гомеостатических механизмов , которые поддерживают постоянство внутренней среды.

Способность организма справляться с требованиями, выдвигаемыми окружающей средой, сильно варьирует от вида к виду. Человек, использующий в дополнение к внутренним механизмам гомеостаза сложные типы поведения, по-видимому, обладает наибольшей независимостью от внешних условий. Тем не менее многие животные превосходят его в определенных видоспецифических возможностях. Например, полярные медведи более устойчивы к холоду; некоторые виды пауков и ящериц, живущие в пустынях, лучше переносят жару; верблюды могут дольше обходиться без воды. В этой главе мы рассмотрим ряд структур, позволяющих нам обрести некоторую долю независимости от меняющихся физических условий внешнего мира. Мы поближе познакомимся также с регуляторными механизмами, которые поддерживают постоянство нашей внутренней среды.

Астронавты облачаются в специальные костюмы (скафандры), которые позволяют при работе в среде, близкой к вакууму, сохранять нормальную температуру тела, достаточное напряжение кислорода в крови и кровяное давление. Специальные датчики, вмонтированные в эти костюмы, регистрируют концентрацию кислорода, температуру тела, показатели сердечной деятельности и сообщают эти данные компьютерам космического корабля, а те в свою очередь - компьютерам наземного контроля. Компьютеры управляемого космического аппарата могут справиться практически с любой из предсказуемых ситуаций, касающихся потребностей организма. Если возникает какая-либо непредвиденная проблема, к ее решению подключаются компьютеры, находящиеся на Земле, которые и посылают новые команды непосредственно приборам скафандра.
В организме регистрацию сенсорных данных и местный контроль осуществляет вегетативная нервная система при участии эндокринной системы, которая берет на себя функцию всеобщей координации.

Вегетативная нервная система

Некоторые общие принципы организации сенсорных и двигательных систем весьма пригодятся нам при изучении систем внутренней регуляции. Все три отдела вегетативной (автономной) нервной системы имеют «сенсорные » и «двигательные » компоненты. В то время как первые регистрируют показатели внутренней среды, вторые усиливают или тормозят деятельность тех структур, которые осуществляют сам процесс регуляции.

Внутримышечные рецепторы наряду с рецепторами, расположенными в сухожилиях и некоторых других местах, реагируют на давление и растяжение. Все вместе они составляют особого рода внутреннюю сенсорную систему, которая помогает контролировать наши движения.
Рецепторы, участвующие в гомеостазе, действуют иным способом: они воспринимают изменения в химическом составе крови или колебания давления в сосудистой системе и в полых внутренних органах, таких как пищеварительный тракт и мочевой пузырь. Эти сенсорные системы, собирающие информацию о внутренней среде, по своей организации очень сходны с системами, воспринимающими сигналы с поверхности тела. Их рецепторные нейроны образуют первые синаптические переключения внутри спинного мозга. По двигательным путям вегетативной системы идут команды к органам, непосредственно регулирующим внутреннюю среду . Эти пути начинаются со специальных вегетативных преганглионарных нейронов спинного мозга. Такая организация несколько напоминает организацию спинальною уровня двигаательной системы.

Основное внимание в згой главе будет уделено тем двигательным компонентам вегетативной системы, которые иннервируют мускулатуру сердца, кровеносных сосудов и кишок, вызывая ее сокращение или расслабление. Такие же волокна иннервируют и железы, вызывая процесс секреции.

Вегетативная нервная система состоит из двух больших отделов симпатического и парасимпатического . Оба отдела имеют одну структурную особенность, с которой мы раньше не сталкивались: нейроны, управляющие мускулатурой внутренних органов и железами, лежат за пределами центральной нервной системы , образуя небольшие инкапсулированные скопления клеток, называемые ганглиями . Таким образом, в вегетативной нервной системе имеется дополнительное звено между спинным мозгом и концевым рабочим органом (эффектором).

Вегетативные нейроны спинного мозга объединяют сенсорную информацию, поступающую от внутренних органов и других источников. На этой основе они затем регулируют активность нейронов вегетативных ганглиев . Связи между ганглиями и спинным мозгом называются преганглионарными волокнами . Нейромедиатор, используемый для передачи импульсов от спинною мозга к нейронам ганглиев как в симпатическом, так и в парасимпатическом отделах, - это почти всегда ацетилхолин , тот же медиатор, с помощью которого мотонейроны спинного мозга непосредственно управляют скелетными мышцами. Так же как и в волокнах, иннервирующих скелетную мускулатуру, действие ацетилхолина может усиливаться в присутствии никотина и блокироваться кураре. Аксоны, идущие от нейронов автономных ганглиев , или постганглионарные волокна , затем направляются к органам-мишеням, образуя там много разветвлений.

Симпатический и парасимпатический отделы вегетативной нервной системы различаются между собой
1) по уровням, на которых преганглионарные волокна выходят из спинного мозга;
2) по близости расположения ганглиев к органам-мишеням;
3) по нейромедиатору, который используют постганглионарные нейроны для регулирования функций этих органов-мишеней.
Эти особенности мы сейчас и рассмотрим.

Симпатическая нервная система

В симпатической системе преганглионарные волокна выходят из грудного и поясничного отделов спинного мозга . Ее ганглии расположены довольно близко к спинному мозгу, и к органам-мишеням от них идут очень длинные постганглионарные волокна (см. рис. 63). Главный медиатор симпатических нервов - норадреналин , один из катехоламинов, который служит также медиатором и в центральной нервной системе.

Рис. 63. Симпатический и парасимпатический отделы вегетативной нервной системы, органы, которые они иннервируют, и их воздействие на каждый орган.

Чтобы понять, на какие органы действует симпатическая нервная система, проще всего представить себе, что происходит с возбужденным животным, готовым к реакции типа «борьбы или бегства».
Зрачки расширяются, чтобы пропускать больше света; частота сокращений сердца возрастает, и каждое сокращение становится более мощным, что ведет к усилению общего кровотока. Кровь отливает от кожи и внутренних органов к мышцам и мозгу. Моторика желудочно-кишечной системы ослабевает, процессы пищеварения замедляются. Мышцы, расположенные вдоль воздушных путей, ведущих к легким, расслабляются, что позволяет увеличить частоту дыхания и усилить газообмен. Клетки печени и жировой ткани отдают в кровь больше глюкозы и жирных кислот - высокоэнергетического топлива, а поджелудочная железа получает команду вырабатывать меньше инсулина. Это позволяет мозгу получать большую долю глюкозы, циркулирующей в кровяном русле, так как в отличие от других органов мозг не требует инсулина для утилизации сахара крови. Медиатором симпатической нервной системы, осуществляющей все эти изменения, служит норадреналин.

Существует дополнительная система, которая оказывает еще более генерализованное воздействие, чтобы вернее обеспечить все эти изменения. На верхушках почек сидят, как два небольших колпачка, надпочечники . В их внутренней части - мозговом веществе - имеются особые клетки, иннервируемые преганглионарными симпатическими волокнами. Эти клетки в процессе эмбрионального развития образуются из тех же клеток нервного гребня, из которых формируются симпатические ганглии. Таким образом, мозговое вещество - это компонент симпатической нервной системы. При активации преганглионарными волокнами клетки мозгового вещества выделяют свои собственные катехоламины (норадреналин и адреналин) прямо в кровь для доставки к органам-мишеням (рис. 64). Циркулирующие медиаторы-гормоны - служат примером того, как осуществляется регуляция эндокринными органами (см. с. 89).

Парасимпатическая нервная система

В парасимпатическом отделе преганглионарные волокна идут от ствола головного мозга («черепной компонент») и от нижних, крестцовых сегментов спинного мозга (см. выше рис. 63). Они образуют, в частности, очень важный нервный ствол, называемый блуждающим нервом , многочисленные ветви которого осуществляют всю парасимпатическую иннервацию сердца, легких и кишечного тракта. (Блуждающий нерв передает также сенсорную информацию от этих органов обратно в центральную нервную систему.) Преганглионарные парасимпатические аксоны очень длинны, так как их ганглии , как правило, располагаются поблизости или внутри тех тканей, которые они иннервируют .

В окончаниях волокон парасимпатической системы используется медиатор ацетилхолин . Реакция соответствующих клеток-мишеней на ацетилхолин нечувствительна к действию никотина или кураре. Вместо этого ацетилхолиновые рецепторы активируются мускарином и блокируются атропином.

Преобладание парасимпатической активности создает условия для «отдыха и восстановления » организма. В своем крайнем проявлении общий характер парасимпатической активации напоминает то состояние покоя, которое наступает после сытной еды. Повышенный приток крови к пищеварительному тракту ускоряет продвижение пищи через кишечник и усиливает секрецию пищеварительных ферментов. Частота и сила сердечных сокращений снижаются, зрачки сужаются, просвет дыхательных путей уменьшается, а образование слизи в них возрастает. Мочевой пузырь сжимается. Взятые вместе, эти изменения возвращают организм в то мирное состояние, которое предшествовало реакции типа «борьбы или бегства». (Все это представлено на рис. 63; см. также гл. 6.)

Сравнительная характеристика отделов вегетативной нервной системы

Симпатическая система с ее чрезвычайно длинными постганглионарными волокнами сильно отличается от парасимпатической, в которой, наоборот, длиннее преганглионарные волокна, а ганглии расположены вблизи или внутри органов-мишеней. Многие внутренние органы, такие как легкие, сердце, слюнные железы, мочевой пузырь, гонады, получают иннервацию от обоих отделов вегетативной системы (имеют, как говорят, «двойную иннервацию »). Другие ткани и органы, например артерии мышц, получают только симпатическую иннервацию. В целом можно сказать, что два отдела работают попеременно : в зависимости от деятельности организма и от команд высших вегетативных центров доминирует то один, то другой их них.

Эта характеристика, однако, не совсем верна. Обе системы постоянно находятся в состоянии той или иной степени активности . Тот факт, что такие органы-мишени, как сердце или радужная оболочка глаза, могут реагировать на импульсы, идущие от обоих отделов, попросту отражает их взаимодополняющую роль. Например, когда вы сильно сердитесь, у вас поднимается кровяное давление, которое возбуждает соответствующие рецепторы, расположенные в сонных артериях. Эти сигналы воспринимает интегрирующий центр сердечно-сосудистой системы, находящийся в нижней части ствола мозга и известный под названием ядра одиночного тракта. Возбуждение этого центра активирует преганглионарные парасимпатические волокна блуждающего нерва, что приводит к уменьшению частоты и силы сердечных сокращений. Одновременно под влиянием того же координирующего сосудистого центра происходит угнетение симпатической активности, противодействующее повышению кровяного давления.

Насколько существенно функционирование каждого из отделов для адаптивных реакций? Как это ни удивительно, не только животные, но и люди могут переносить почти полное выключение симпатической нервной системы без видимых дурных последствий. Такое выключение рекомендуется при некоторых формах стойкой гипертонии.

А вот без парасимпатической нервной системы обойтись не так-то просто . Люди, перенесшие подобную операцию и оказавшиеся вне охранительных условий больницы или лаборатории, очень плохо адаптируются к окружающей среде. Они не могут регулировать температуру тела при воздействии жары или холода; при кровопотере у них нарушается регуляция кровяного давления, а при любой интенсивной мышечной нагрузке быстро развивается утомление.

Диффузная нервная система кишечника

Недавние исследования выявили существование третьего важного отдела автономной нервной системы - диффузной нервной системы кишечника . Этот отдел ответствен за иннервацию и координацию органов пищеварения. Его работа независима от симпатической и парасимпатической систем, но может видоизменяться под их влиянием. Это дополнительное звено, которое связывает вегетативные постганглионарные нервы с железами и мускулатурой желудочно-кишечного тракта.

Ганглии этой системы иннервируют стенки кишок. Аксоны, идущие от клеток этих ганглиев, вызывают сокращения кольцевой и продольной мускулатуры, проталкивающие пищу через желудочно-кишечный тракт, - процесс, называемый перистальтикой. Таким образом, эти ганглии определяют особенности локальных перистальтических движений. Когда пищевая масса находится внутри кишки, она слегка растягивает ее стенки, что вызывает сужение участка, расположенного чуть выше по ходу кишки, и расслабление участка, находящегося чуть ниже. В результате пищевая масса проталкивается дальше. Однако под действием парасимпатических или симпатических нервов активность кишечных ганглиев может изменяться. Активация парасимпатической системы усиливает перистальтику, а симпатической - ослабляет ее.

Медиатором, возбуждающим гладкую мускулатуру кишечника, служит ацетилхолин. Однако тормозящие сигналы, ведущие к расслаблению, передаются, по-видимому, различными веществами, из которых изучены лишь немногие. Среди нейромедиаторов кишечника имеются по меньшей мере три, которые действуют и в центральной нервной системе: соматостатин (см. ниже), эндорфины и вещество Р (см. гл. 6).

Центральная регуляция функций вегетативной нервной системы

Центральная нервная система осуществляет контроль над вегетативной системой в гораздо меньшей степени, чем над сенсорной или скелетной двигательной системой. Области мозга, которые больше всего связаны с вегетативными функциями, - это гипоталамус и ствол мозга , в особенности та его часть, которая расположена прямо над спинным мозгом, - продолговатый мозг. Именно из этих областей идут основные проводящие пути к симпатическим и парасимпатическим преганглионарным автономным нейронам на спинальном уровне.

Гипоталамус. Гипоталамус - это одна из областей мозга, общая структура и организация которой более или менее сходна у представителей различных классов позвоночных животных.

В целом принято считать, что гипоталамус - это средоточие висцеральных интегративных функций. Сигналы от нейронных систем гипоталамуса непосредственно поступают в сети, которые возбуждают преганглионарные участки вегетативных нервных путей. Кроме того, эта область мозга осуществляет прямой контроль над всей эндокринной системой через посредство специфических нейронов, регулирующих секрецию гормонов передней доли гипофиза, а аксоны других гипоталамических нейронов оканчиваются в задней доле гипофиза. Здесь эти окончания выделяют медиаторы, которые циркулируют в крови как гормоны: 1) вазопрессин , повышающий кровяное давление в экстренных случаях, когда происходит потеря жидкости или крови; он также уменьшает выделение воды с мочой (поэтому вазопрессин называют еще антидиуретическим гормоном); 2) окситоцин , стимулирующий сокращения матки на завершающей стадии родов.

Рис. 65. Гипоталамус и гипофиз. Схематически показаны основные функциональные зоны гипоталамуса.

Хотя среди скоплений гипоталамических нейронов имеется несколько четко отграниченных ядер, большая часть гипоталамуса представляет собой совокупность зон с нерезкими границами (рис. 65). Однако в трех зонах имеются достаточно выраженные ядра. Мы рассмотрим сейчас функции этих структур.

1. Перивентрикулярная зона непосредственно примыкает к третьему мозговому желудочку, который проходит через центр гипоталамуса. Выстилающие желудочек клетки передают нейронам перивентрикулярной зоны информацию о важных внутренних параметрах, которые могут требовать регуляции, - например, о температуре, концентрации солей, уровнях гормонов, секретируемых щитовидной железой, надпочечниками или гонадами в соответствии с инструкциями от гипофиза.

2. Медиальная зона содержит большинство проводящих путей, с помощью которых гипоталамус осуществляет эндокринный контроль через гипофиз. Весьма приближенно можно сказать, что клетки перивентрикулярной зоны контролируют действительное выполнение команд, отданных гипофизу клетками медиальной зоны.

3. Через клетки латеральной зоны осуществляется контроль над гипоталамусом со стороны более высоких инстанций коры большого мозга и лимбической системы. Сюда же поступает сенсорная информация из центров продолговатого мозга, координирующих дыхательную и сердечно-сосудистую деятельность. Латеральная зона - это то место, где высшие мозговые центры могут вносить коррективы в реакции гипоталамуса на изменения внутренней среды. В коре, например, происходит сопоставление информации, поступающей из двух источников - внутренней и внешней среды . Если, скажем, кора сочтет, что время и обстоятельства не подходят для принятия пищи, донесение органов чувств о низком содержании сахара в крови и пустом желудке будет отложено в сторону до более благоприятного момента Игнорирование гипоталамуса со стороны лимбической системы менее вероятно . Скорее эта система может добавить эмоциональную и мотивационную окраску к интерпретации внешних сенсорных сигналов или же сравнить представление об окружающем, основанное на этих сигналах, с аналогичными ситуациями, имевшими место в прошлом.

Вместе с кортикальным и лимбическим компонентами гипоталамус выполняет также множество рутинных интегрирующих действий, причем на протяжении значительно более длительных периодов времени, чем при осуществлении кратковременных регуляторных функций. Гипоталамус заранее «знает», какие потребности возникнут у организма при нормальном суточном ритме жизни. Он, например, приводит эндокринную систему в полную готовность к действию, как только мы просыпаемся. Он также следит за гормональной активностью яичников на протяжении менструального цикла; принимает меры, подготавливающие матку к прибытию оплодотворенного яйца. У перелетных птиц и у млекопитающих, впадающих в зимнюю спячку, гипоталамус с его способностью определять длину светового дня координирует жизнедеятельность организма во время циклов, длящихся несколько месяцев. (Об этих аспектах централизованной регуляции внутренних функций будет говориться в главах 5 и 6.)

Продолговатый мозг (таламус и гипоталамус)

Гипоталамус составляет менее 5% от всей массы мозга. Однако в этом небольшом количестве ткани содержатся центры, которые поддерживают все функции организма, за исключением спонтанных дыхательных движений, регуляции кровяного давления и ритма сердца. Эти последние функции зависят от продолговатого мозга (см. рис. 66). При черепно-мозговых травмах так называемая «смерть мозга» наступает тогда, когда исчезают все признаки электрической активности коры и утрачивается контроль со стороны гипоталамуса и продолговатого мозга, хотя с помощью искусственного дыхания еще можно поддерживать достаточное насыщение циркулирующей крови кислородом.

продолжение
- -

История развития учения о гомеостазе

К.Бернар и его роль в развитии учения о внутренней среде

Впервые гомеостатические процессы в организме как процессы, обеспечивающие постоянство его внутренней среды, рассмотрел французский естествоиспытатель и физиолог К.Бернар в середине XIX в. Сам термин гомеостаз был предложен американским физиологом У.Кенноном лишь в 1929 г.

В становлении учения о гомеостазе ведущую роль сыграла идея К.Бернара о том, что для живого организма существуют «собственно, две среды: одна среда внешняя, в которой помещен организм, другая среда внутренняя, в которой живут элементы тканей». В 1878 г. ученый формулирует концепцию о постоянстве состава и свойств внутренней среды. Ключевой идеей этой концепции стала мысль о том, что внутреннюю среду составляет не только кровь, но и все плазматические и бластоматические жидкости, которые из нее происходят. «Внутренняя среда, – писал К.Бернар, – … образуется из всех составных частей крови – азотистых и безазотистых, белковины, фибрина, сахара, жира и прочее, … за исключением кровяных шариков, которые есть уже самостоятельные органические элементы».

К внутренней среде относятся только жидкие составляющие организма, которые омывают все элементы тканей, т.е. плазма крови, лимфа и тканевая жидкость. Атрибутом внутренней среды К.Бернар считал то, что она находится «в непосредственном соприкосновении с анатомическими элементами живого существа». Он отмечал, что, изучая физиологические свойства этих элементов, необходимо рассматривать условия их проявления и их зависимость от окружающей среды.

Клод Бернар (1813-1878)

Крупнейший французский физиолог, патолог, естествоиспытатель. В 1839 г. окончил Парижский университет. В 1854–1868 гг. руководил кафедрой общей физиологии Парижского университета, с 1868 г. – сотрудник Музея естественной истории. Член Парижской академии (с 1854 г.), ее вице-президент (1868) и президент (1869), иностранный член-корреспондент Санкт-Петербургской академии наук (с 1860 г.).
Научные исследования К.Бернара посвящены физиологии нервной системы, пищеварения и кровообращения. Велики заслуги ученого в развитии экспериментальной физиологии. Он провел классические исследования по анатомии и физиологии желудочно-кишечного тракта, роли поджелудочной железы, углеводного обмена, функций пищеварительных соков, открыл образование гликогена в печени, изучал иннервацию кровеносных сосудов, сосудосуживающее действие симпатических нервов и др. Один из создателей учения о гомеостазе, ввел понятие о внутренней среде организма. Заложил основы фармакологии и токсикологии. Показал общность и единство ряда жизненных явлений у животных и растений.

Ученый справедливо считал, что проявления жизни обусловлены конфликтом между существующими силами организма (конституцией) и влиянием внешней среды. Жизненный конфликт в организме проявляется в виде двух противоположных и диалектически связанных феноменов: синтеза и распада. В результате этих процессов организм приспосабливается, или адаптируется, к условиям среды.

Анализ работ К.Бернара позволяет сделать вывод о том, что все физиологические механизмы, сколь различны они бы ни были, служат сохранению постоянства условий жизни во внутренней среде. «Постоянство внутренней среды есть условие свободной, независимой жизни. Это достигается посредством процесса, который поддерживает во внутренней среде все условия, необходимые для жизни элементов». Постоянство среды предполагает такое совершенство организма, при котором внешние переменные в каждое мгновение компенсировались бы и уравновешивались. Для жидкой среды были определены основные условия ее постоянного поддержания: наличие воды, кислорода, питательных веществ и определенная температура.

Независимость жизни от внешней среды, о которой говорил К.Бернар, весьма относительна. Внутренняя среда тесно связана с внешней. Более того, она сохранила многие свойства той первичной среды, в которой зародилась когда-то жизнь. Живые существа как бы замкнули морскую воду в систему кровеносных сосудов и превратили постоянно колеблющуюся внешнюю среду в среду внутреннюю, постоянство которой охраняется специальными физиологическими механизмами.

Главная функция внутренней среды – приведение «органических элементов в соотношение друг с другом и с наружной средой». К.Бернар объяснил, что между внутренней средой и клетками организма существует постоянный обмен веществ за счет их качественного и количественного различия внутри клеток и снаружи. Внутренняя среда создается самим организмом, и постоянство ее состава поддерживается органами пищеварения, дыхания, выделения и т.д., главная функция которых состоит в том, чтобы «приготовить общую питательную жидкость» для клеток организма. Деятельность этих органов регулируется нервной системой и с помощью «специально вырабатываемых веществ». В этом «заключается, беспрерывный круг взаимных влияний, образующих жизненную гармонию».

Таким образом, К.Бернар еще во второй половине XIX столетия дал правильное научное определение внутренней среды организма, выделил ее элементы, описал состав, свойства, эволюционное происхождение и подчеркнул ее значение в обеспечении жизнедеятельности организма.

Учение о гомеостазе У.Кеннона

В отличие от К.Бернара, выводы которого базировались на широких биологических обобщениях, У.Кеннон пришел к заключению о значении постоянства внутренней среды организма другим методом: на основе экспериментальных физиологических исследований. Ученый обратил внимание на то, что жизнь животного и человека, несмотря на довольно частые неблагоприятные воздействия, протекает нормально в течение многих лет.

Американский физиолог. Родился в Прери-дю-Шин (штат Висконсин), в 1896 г. окончил Гарвардский университет. В 1906–1942 гг. – профессор физиологии Гарвардской высшей школы, иностранный Почетный член АН СССР (с 1942 г.).
Основные научные работы посвящены физиологии нервной системы. Открыл роль адреналина как симпатического передатчика и сформулировал концепцию о симпатико-адреналовой системе. Обнаружил, что при раздражении симпатических нервных волокон в их окончаниях выделяется симпатин – вещество, по своему действию близкое к адреналину. Один из создателей учения о гомеостазе, которое изложил в работе «Мудрость тела» (1932). Рассматривал организм человека как саморегулирующуюся систему при ведущей роли вегетативной нервной системы.

У.Кеннон отмечал, что постоянные условия, поддерживаемые в организме, можно было бы назвать равновесием . Однако за этим словом ранее уже закрепилось вполне определенное значение: им обозначают наиболее вероятное состояние изолированной системы, в котором все известные силы взаимно сбалансированы, поэтому в равновесном состоянии параметры системы не зависят от времени, и в системе нет потоков вещества или энергии. В организме же постоянно протекают сложные согласованные физиологические процессы, обеспечивающие устойчивость его состояний. Примером может служить согласованная деятельность мозга, нервов, сердца, легких, почек, селезенки и других внутренних органов и систем. Поэтому У.Кеннон и предложил специальное обозначение для таких состояний – гомеостаз . Это слово вовсе не предполагает нечто застывшее и неподвижное. Оно означает условие, которое может меняться, но все же оставаться относительно постоянным.

Термин гомеостаз образован из двух греческих слов: homoios – подобный, сходный и stasis – стояние, неподвижность. В толковании этого термина У.Кеннон подчеркивал, что слово stasis подразумевает не только устойчивое состояние, но и условие, ведущее к этому явлению, а слово homoios указывает на сходство и подобие явлений.

Понятие гомеостаза, по мнению У.Кеннона, включает в себя и физиологические механизмы, обеспечивающие устойчивость живых существ. Эта особая устойчивость не характеризуется стабильностью процессов, наоборот, они динамичны и постоянно меняются, однако в условиях «нормы» колебания физиологических показателей довольно жестко ограничены.

Позже У.Кеннон показал, что все обменные процессы и основные условия, при которых выполняются важнейшие жизненные функции организма – температура тела, концентрация глюкозы и минеральных солей в плазме крови, давление в сосудах, – колеблются в очень узких пределах вблизи некоторых средних величин – физиологических констант. Поддержание этих констант в организме и есть обязательное условие существования.

У.Кеннон выделил и классифицировал основные компоненты гомеостаза . К ним он отнес материалы, обеспечивающие клеточные потребности (материалы, необходимые для роста, восстановления и размножения, – глюкоза, белки, жиры; вода; хлориды натрия, калия и другие соли; кислород; регуляторные соединения), и физико-химические факторы , влияющие на клеточную активность (осмотическое давление, температура, концентрация водородных ионов и т.п.). На современном этапе развития знаний о гомеостазе эта классификация пополнилась механизмами, обеспечивающими структурное постоянство внутренней среды организма и структурно-функциональную целостность всего организма. К их числу относятся:

а) наследственность;
б) регенерация и репарация;
в) иммунобиологическая реактивность.

Условиями автоматического поддержания гомеостаза , по У.Кеннону, являются:

– безупречно действующая система сигнализации, оповещающая центральные и периферические регуляторные устройства о любых изменениях, угрожающих гомеостазу;
– наличие корригирующих устройств, своевременно вступающих в действие и задерживающих наступление этих изменений.

Э.Пфлюгер, Ш.Рише, И.М. Сеченов, Л.Фредерик, Д.Холдейн и другие исследователи, работавшие на рубеже XIX–XX вв., также подошли к идее о существовании физиологических механизмов, обеспечивающих устойчивость организма, и использовали свою терминологию. Однако самое широкое распространение как среди физиологов, так и среди ученых других специальностей, получил термин гомеостаз , предложенный У.Кенноном для характеристики создающих такую способность состояний и процессов.

Для биологических наук в понимании гомеостаза по У.Кеннону ценно то, что живые организмы рассматриваются как открытые системы, имеющие множество связей с окружающей средой. Эти связи осуществляются через посредство органов дыхания и пищеварения, поверхностных рецепторов, нервной и мышечной систем и др. Изменения в окружающей среде прямо или опосредованно воздействуют на указанные системы, вызывая в них соответствующие изменения. Однако эти воздействия обычно не сопровождаются большими отклонениями от нормы и не вызывают серьезных нарушений в физиологических процессах.

Вклад Л.С. Штерн в развитие представлений о гомеостазе

Российский физиолог, академик АН СССР (с 1939 г.). Родилась в Либаве (Литва). В 1903 г. окончила Женевский университет и до 1925 г. работала там же. В 1925–1948 гг. – профессор 2-го Московского медицинского института и одновременно директор Института физиологии АН СССР. С 1954 по 1968 г. заведовала отделом физиологии Института биофизики АН СССР.
Работы Л.С. Штерн посвящены изучению химических основ физиологических процессов, протекающих в различных отделах центральной нервной системы. Она изучала роль катализаторов в процессе биологического окисления, предложила метод введения лекарственных веществ в цереброспинальную жидкость при лечении некоторых заболеваний.

Одновременно с У.Кенноном в 1929 г. в России свои представления о механизмах поддержания постоянства внутренней среды сформулировала российский физиолог Л.С. Штерн. «В отличие от простейших, у более сложных многоклеточных организмов обмен с окружающей средой совершается при посредстве так называемой среды, из которой отдельные ткани и органы черпают необходимый им материал и в которую выделяют продукты своего метаболизма. … По мере дифференциации и развития отдельных частей организма (органов и тканей) должна создаваться и развиваться для каждого органа, для каждой ткани своя непосредственная питательная среда, состав и свойства которой должны соответствовать структурным и функциональным особенностям данного органа. Эта непосредственная питательная, или интимная, среда должна обладать определенным постоянством, обеспечивающим нормальную жизнедеятельность омываемого органа. … Непосредственной питательной средой отдельных органов и тканей является межклеточная или тканевая жидкость».

Л.С. Штерн установила важность для нормальной деятельности органов и тканей постоянства состава и свойств не только крови, но и тканевой жидкости. Она показала существование гистогематических барьеров – физиологических преград, разделяющих кровь и ткани. Данные образования, по ее мнению, состоят из эндотелия капилляров, базальной мембраны, соединительной ткани, клеточных липопротеидных мембран. Избирательная проницаемость барьеров способствует сохранению гомеостаза и известной специфики внутренней среды, необходимой для нормальной функции конкретного органа или ткани. Предложенная и хорошо обоснованная Л.С. Штерн теория барьерных механизмов – это принципиально новый вклад в учение о внутренней среде.

Гистогематический , или сосудисто-тканевый , барьер – это, в сущности, физиологический механизм, определяющий относительное постоянство состава и свойств собственной среды органа и клетки. Он выполняет две важнейшие функции: регуляторную и защитную, т.е. обеспечивает регуляцию состава и свойств собственной среды органа и клетки и защищает ее от поступления из крови веществ, чуждых данному органу или всему организму.

Гистогематические барьеры имеются почти во всех органах и имеют соответствующие названия: гематоэнцефалический, гематоофтальмический, гематолабиринтный, гематоликворный, гематолимфатический, гематопульмональный и гематоплевральный, гематоренальный, а также барьер «кровь–половые железы» (например, гематотестикулярный) и др.

Современные представления о гомеостазе

Идея гомеостаза оказалась весьма плодотворной, и на протяжении всего XX в. ее развивали многие отечественные и зарубежные ученые. Однако до сих пор это понятие в биологической науке не имеет четкого терминологического определения. В научной и в учебно-методической литературе можно встретить либо равнозначность терминов «внутренняя среда» и «гомеостаз», либо разную трактовку понятия «гомеостаз».

Российский физиолог, академик АН СССР (1966), действительный член АМН СССР (1945). Окончил Ленинградский институт медицинских знаний. С 1921 г. работал в Институте мозга под руководством В.М. Бехтерева, в 1922–1930 гг. в Военно-медицинской академии в лаборатории И.П. Павлова. В 1930–1934 гг. профессор кафедры физиологии Горьковского медицинского института. В 1934–1944 гг. – заведующий отделом Всесоюзного института экспериментальной медицины в Москве. В 1944–1955 гг. работал в Институте физиологии АМН СССР (с 1946 г. – директором). С 1950 г. – руководитель Нейрофизиологической лаборатории АМН СССР, а затем и заведующий отделом нейрофизиологии Института нормальной и патологической физиологии АМН СССР. Лауреат Ленинской премии (1972 г.).
Основные работы посвящены изучению деятельности организма и особенно головного мозга на основе разработанной им теории функциональных систем. Применение этой теории к эволюции функций дало возможность П.К. Анохину сформулировать понятие системогенеза как общей закономерности эволюционного процесса.

Внутренней средой организма называют всю совокупность циркулирующих жидкостей организма: кровь, лимфу, межклеточную (тканевую) жидкость, омывающую клетки и структурные ткани, участвующую в обмене веществ, химических и физических превращениях. К составным частям внутренней среды относят и внутриклеточную жидкость (цитозоль), считая, что она является непосредственно той средой, в которой протекают основные реакции клеточного обмена. Объем цитоплазмы в организме взрослого человека составляет около 30 л, межклеточной жидкости – около 10 л, а занимающих внутрисосудистое пространство крови и лимфы – 4–5 л.

В одних случаях термин «гомеостаз» применяют для обозначения постоянства внутренней среды и способности организма обеспечивать его. Гомеостаз – это относительное динамическое, колеблющееся в строго очерченных границах постоянство внутренней среды и устойчивость (стабильность) основных физиологических функций организма. В других случаях под гомеостазом понимают физиологические процессы или управляющие системы, регулирующие, координирующие и корригирующие жизнедеятельность организма с целью поддержания стабильного состояния.

Таким образом, к определению понятия гомеостаза подходят с двух сторон. С одной стороны, гомеостаз рассматривается как количественное и качественное постоянство физико-химических и биологических параметров. С другой, гомеостаз определяют как совокупность механизмов, поддерживающих постоянство внутренней среды организма.

Анализ определений, имеющихся в биологической и справочной литературе, позволил выделить наиболее важные стороны этого понятия и сформулировать общее определение: гомеостаз – состояние относительного динамического равновесия системы, поддерживаемого за счет механизмов саморегуляции . Это определение не только включает в себя знания об относительности постоянства внутренней среды, но и демонстрирует значение гомеостатических механизмов биологических систем, обеспечивающих это постоянство.

К жизненным функциям организма относят гомеостатические механизмы самого различного характера и действия: нервные, гуморально-гормональные, барьерные, контролирующие и осуществляющие постоянство внутренней среды и действующие на разных уровнях.

Принцип работы гомеостатических механизмов

Принцип работы гомеостатических механизмов, обеспечивающих регуляцию и саморегуляцию на разных уровнях организации живой материи, описал Г.Н. Кассиль. Выделяют следующие уровни регуляции:

1) субмолекулярный;
2) молекулярный;
3) субклеточный;
4) клеточный;
5) жидкостный (внутренняя среда, гуморально-гормонально-ионные взаимоотношения, барьерные функции, иммунитет);
6) тканевой;
7) нервный (центральные и периферические нервные механизмы, нейрогуморально-гормонально-барьерный комплекс);
8) организменный;
9) популяционный (популяции клеток, многоклеточных организмов).

Элементарным гомеостатическим уровнем биологических систем следует считать организменный . В его границах выделяют ряд других: цитогенетический, соматический, онтогенетический и функциональный (физиологический) гомеостаз, соматический геностаз.

Цитогенетический гомеостаз как морфологическая и функциональная приспособляемость выражает непрерывную перестройку организмов соответственно условиям существования. Прямо или косвенно функции такого механизма выполняет наследственный аппарат клетки (гены).

Соматический гомеостаз – направление суммарных сдвигов функциональной активности организма на установление наиболее оптимальных отношений его со средой.

Онтогенетический гомеостаз – это индивидуальное развитие организма от образования зародышевой клетки до смерти или прекращения существования в прежнем качестве.

Под функциональным гомеостазом понимают оптимальную физиологическую активность различных органов, систем и всего организма в конкретных условиях среды. В свою очередь он включает: обменный, дыхательный, пищеварительный, выделительный, регуляторный (обеспечивающий оптимальный уровень нейрогуморальной регуляции в данных условиях) и психологический гомеостаз.

Соматический геностаз представляет собой контроль над генетическим постоянством соматических клеток, составляющих индивидуальный организм.

Можно выделить гомеостаз циркуляторный, двигательный, сенсорный, психомоторный, психологический и даже информационный, обеспечивающий оптимальную реакцию организма на поступающую информацию. Отдельно выделяют патологический уровень – болезни гомеостаза, т.е. нарушение работы гомеостатических механизмов и регулирующих систем.

Гемостаз как приспособительный механизм

Гемостаз является жизненно важным комплексом сложных взаимосвязанных процессов, составной частью приспособительного механизма организма. Ввиду особой роли крови в поддержании основных параметров организма его выделяют в самостоятельный вид гомеостатических реакций.

Основной компонент гемостаза – это сложная система приспособительных механизмов, обеспечивающая текучесть крови в сосудах и свертывание ее при нарушении их целостности. Однако гемостаз не только обеспечивает поддержание жидкого состояния крови в сосудах, резистентности стенок сосудов и остановку кровотечения, но и оказывает влияние на гемодинамику и проницаемость сосудов, участвует в заживлении ран, в развитии воспалительных и иммунных реакций, имеет отношение к неспецифической резистентности организма.

Система гемостаза находится в функциональном взаимодействии с системой иммунитета. Эти две системы формируют единый гуморальный защитный механизм, функции которого связаны, с одной стороны, с борьбой за чистоту генетического кода и предупреждением различных заболеваний, а с другой – с сохранением жидкого состояния крови в циркуляторном русле и остановкой кровотечения в случае нарушения целостности сосудов. На их функциональную активность оказывают регулирующее влияние нервная и эндокринная системы.

Наличие общих механизмов «включения» защитных систем организма – иммунной, свертывающей, фибринолитической и др. – позволяет рассматривать их как единую структурно и функционально определенную систему.

Особенностями ее являются: 1) каскадный принцип последовательного включения и активирования факторов до образования конечных физиологически активных веществ: тромбина, плазмина, кининов; 2) возможность активации указанных систем в любом участке сосудистого русла; 3) общий механизм включения систем; 4) обратная связь в механизме взаимодействия этих систем; 5) существование общих ингибиторов.

Обеспечение надежности функционирования системы гемостаза, как и других биологических систем, осуществляется в соответствии с общим принципом надежности. Это означает, что надежность системы достигается избыточностью элементов управления и их динамическим взаимодействием, дублированием функций или взаимозаменяемостью элементов регулирования с совершенным быстрым возвратом к прежнему состоянию, способностью к динамической самоорганизации и поиску устойчивых состояний.

Циркуляция жидкости между клеточными и тканевыми пространствами, а также кровеносными и лимфатическими сосудами

Клеточный гомеостаз

Важнейшее место в саморегуляции и сохранении гомеостаза занимает клеточный гомеостаз. Его называют также авторегуляцией клетки .

Ни гормональная, ни нервная системы принципиально не способны справиться с задачей поддержания постоянства состава цитоплазмы отдельной клетки. Каждая клетка многоклеточного организма имеет свой собственный механизм авторегуляции процессов в цитоплазме.

Ведущее место в этой регуляции принадлежит наружной цитоплазматической мембране. Она обеспечивает передачу химических сигналов в клетку и из клетки, изменяя свою проницаемость, принимает участие в регуляции электролитного состава клетки, осуществляет функцию биологических «насосов».

Гомеостаты и технические модели гомеостатических процессов

В последние десятилетия проблему гомеостаза стали рассматривать с позиции кибернетики – науки о целенаправленном и оптимальном управлении сложными процессами. Биологические системы, такие как клетка, мозг, организм, популяция, экосистемы функционируют по одним и тем же законам.

Людвиг фон Берталанфи (1901–1972)

Австрийский биолог-теоретик, создатель «общей теории систем». С 1949 г. работал в США и Канаде. Подходя к биологическим объектам как к организованным динамическим системам, Берталанфи дал развернутый анализ противоречий механицизма и витализма, возникновения и развития идей о целостности организма и на основе последних – формирования системных концепций в биологии. Берталанфи принадлежит ряд попыток применить «организмический» подход (т.е. подход с точки зрения целостности) при исследовании тканевого дыхания и соотношения метаболизма и роста у животных. Предложенный ученым метод анализа открытых эквифинальных (стремящихся к цели) систем дал возможность широко использовать в биологии идеи термодинамики, кибернетики, физической химии. Его идеи нашли применение в медицине, психиатрии и других прикладных дисциплинах. Будучи одним из пионеров системного подхода, ученый выдвинул первую в современной науке обобщенную системную концепцию, задачами которой являются разработка математического аппарата описания разных типов систем, установление изоморфизма законов в различных областях знания и поиск средств интеграции науки («Общая теория систем», 1968). Эти задачи, однако, были реализованы лишь применительно к некоторым типам открытых биологических систем.

Основоположником теории управления в живых объектах является Н.Винер. В основе его представлений лежит принцип саморегулирования – автоматического поддержания постоянства или же изменение по требуемому закону регулируемого параметра. Однако, задолго до Н.Винера и У.Кеннона идея автоматического регулирования была высказана И.М. Сеченовым: «…в животном теле регуляторы могут быть только автоматическими, т.е. приводиться в действие измененными условиями в состоянии или ходе машины (организма) и развивать деятельности, которыми эти неправильности устраняются». В этой фразе имеется указание на необходимость и прямых, и обратных связей, лежащих в основе саморегуляции.

Идею саморегуляции в биологических системах углубил и развил Л.Берталанфи, понимавший биологическую систему как «упорядоченное множество взаимосвязанных элементов». Он же рассмотрел и общий биофизический механизм гомеостаза в контексте открытых систем. На основе теоретических представлений Л.Берталанфи в биологии сложилось новое направление, получившее название системный подход . Взгляды Л.Берталанфи разделял В.Н. Новосельцев, представивший проблему гомеостаза как задачу управления потоками веществ и энергии, которыми открытая система обменивается со средой.

Первая попытка моделирования гомеостаза и установления возможных механизмов управления им принадлежит У.Р. Эшби. Им сконструировано искусственное саморегулирующееся устройство, названное «гомеостатом». Гомеостат У.Р. Эшби представлял собой систему потенциометрических схем и воспроизводил лишь функциональные стороны явления. Адекватно отобразить сущность процессов, лежащих в основе гомеостаза, эта модель не могла.

Следующий шаг в развитии гомеостатики сделал С.Бир, указавший на два новых принципиальных момента: иерархический принцип построения гомеостатических систем для управления сложными объектами и принцип живучести. С.Бир попытался применить определенные гомеостатические принципы при практической разработке организованных систем управления, выявил некоторые кибернетические аналогии между живой системой и сложным производством.

Качественно новый этап развития этого направления наступил после создания формальной модели гомеостата Ю.М. Горским. Его взгляды сложились под влиянием научных представлений Г.Селье, утверждавшего, что «...если удастся включить в модели, отражающие работу живых систем, противоречия, да еще при этом понять, почему природа, создавая живое, пошла по такому пути, – это будет новым прорывом в тайны живого с большим практическим выходом».

Физиологический гомеостаз

Физиологический гомеостаз поддерживается вегетативной и соматической нервной системой, комплексом гуморально-гормональных и ионных механизмов, составляющих физико-химическую систему организма, а также поведением, в котором велика роль как наследственных форм, так и приобретенного индивидуального опыта.

Представление о ведущей роли вегетативной нервной системы, в особенности ее симпатоадреналового отдела, развивалось в трудах Э.Гельгорна, Б.Р. Гесса, У.Кеннона, Л.А. Орбели, А.Г. Гинецинского и др. Организующая роль нервного аппарата (принцип нервизма) лежит в основе отечественной физиологической школы И.П. Павлова, И.М. Сеченова, А.Д. Сперанского.

Гуморально-гормональные теории (принцип гуморализма) получили развитие за рубежом в работах Г.Дейла, О.Леви, Г.Селье, Ч.Шеррингтона и др. Большое внимание этой проблеме уделяли российские ученые И.П. Разенков и Л.С. Штерн.

Накопившийся колоссальный фактический материал, описывающий различные проявления гомеостаза в живых, технических, социальных, экологических системах, требует изучения и рассмотрения с единых методологических позиций. Объединяющей теорией, которая смогла соединить все многообразные подходы к пониманию механизмов и проявлений гомеостаза стала теория функциональных систем , созданная П.К. Анохиным. В своих взглядах ученый основывался на представлениях Н.Винера о самоорганизующихся системах.

Современное научное знание о гомеостазе целого организма строится на понимании его как содружественной и согласованной саморегулирующейся деятельности различных функциональных систем, характеризующейся количественными и качественными изменениями их параметров при физиологических, физических и химических процессах.

Механизм поддержания гомеостаза напоминает маятник (весы). В первую очередь постоянный состав должна иметь цитоплазма клетки – гомеостаз 1-й ступени (см. схему). Это обеспечивается механизмами гомеостаза 2-й ступени – циркулирующими жидкостями, внутренней средой. В свою очередь их гомеостаз связан с вегетативными системами стабилизации состава поступающих веществ, жидкостей и газов и выделением конечных продуктов обмена веществ – ступень 3. Так, на относительно постоянном уровне поддерживается температура, содержание воды и концентрации электролитов, кислорода и углекислого газа, количества питательных веществ и выделяемых продуктов обмена.

Четвертая ступень поддержания гомеостаза – поведение. Помимо целесообразных реакций оно включает эмоции, мотивации, память, мышление. Четвертая ступень активно взаимодействует с предыдущей, основывается на ней и влияет на нее. У животных поведение выражается в выборе пищи, кормовых угодий, мест гнездования, суточных и сезонных миграций и т.п., суть которых в стремлении к покою, восстановлении нарушившегося равновесия.

Итак, гомеостаз – это:

1) состояние внутренней среды и ее свойство;
2) совокупность реакций и процессов, поддерживающих постоянство внутренней среды;
3) способность организма противостоять изменениям среды;
4) условие существования, свободы и независимости жизни: «Постоянство внутренней среды – условие свободной жизни» (К.Бернар).

Поскольку понятие гомеостаз является ключевым в биологии, упоминать о нем следует при изучении всех школьных курсов: «Ботаника», «Зоология», «Общая биология», «Экология». Но, конечно, основное внимание раскрытию этого понятия следует уделить в курсе «Человек и его здоровье». Вот примерные темы, при изучении которых могут быть использованы материалы статьи.

    «Органы. Системы органов, Организм как целое».

    «Нервная и гуморальная регуляция функций в организме».

    «Внутренняя среда организма. Кровь, лимфа, тканевая жидкость».

    «Состав и свойства крови».

    «Кровообращение».

    «Дыхание».

    «Обмен веществ как основная функция организма».

    «Выделение».

    «Терморегуляция».

2. Учебные цели:

Знать сущность гомеостаза, физиологические механизмы поддержания гомеостаза, основы регуляции гомеостаза.

Изучить основные виды гомеостаза. Знать возрастные особенности гомеостаза

3. Вопросы для самоподготовки к освоению данной темы:

1) Определение понятия гомеостаз

2) Виды гомеостаза.

3) Генетический гомеостаз

4) Структурный гомеостаз

5) Гомеостаз внутренней среды организма

6) Иммунологический гомеостаз

7) Механизмы регуляции гомеостаза: нейрогуморальный и эндокринный.

8) Гормональная регуляция гомеостаза.

9) Органы, участвующие в регуляции гомеостаза

10) Общий принцип гомеостатических реакций

11) Видовая специфичность гомеостаза.

12) Возрастные особенности гомеостаза

13) Патологические процессы, сопровождающиеся нарушением гомеостаза.

14) Коррекция гомеостаза организма – главная задача врача.

__________________________________________________________________

4. Вид занятия: внеаудиторное

5. Продолжительность занятия – 3 часа.

6. Оснащение. Электронная презентация «Лекции по биологии», таблицы, муляжи

Гомеостаз (гр. homoios - равный, stasis -состояние) - свойство организма поддерживать постоянство внутренней среды и основные черты присущей ему организации, несмотря на изменчивость параметров внешней среды и действие внутренних возмущающих факторов.

Гомеостаз каждого индивидуума специфичен и обусловлен его генотипом.

Организм - открытая динамичная система. Поток веществ и энергии, наблюдаемый в организме, обуславливает самообновление и самовоспроизведение на всех уровнях от молекулярного до организменного и популяционного.

В процессе обмена веществ с пищей, водой, при газообмене в организм из окружающей среды поступают разнообразные химические соединения, которые после превращений уподобляются химическому составу организма и входят в его морфологические структуры. Через определённый период усвоенные вещества разрушаются, освобождая энергию, а разрушенную молекулу заменяет новая, не нарушая целостности структурных компонентов организма.

Организмы находятся в условиях непрерывно меняющейся среды, несмотря на это, основные физиологические показатели продолжают осуществляться в определённых параметрах и организм поддерживает устойчивое состояние здоровья в течение длительного времени, благодаря процессам саморегуляции.

Таким образом, понятие гомеостаза не связано со стабильностью процессов. В ответ на действие внутренних и внешних факторов происходит некоторое изменение физиологических показателей, а включение регуляторных систем обеспечивает поддержание относительного постоянства внутренней среды. Регуляторные гомеостатические механизмы функционируют на клеточном, органном, организменном и надорганизменном уровнях.

В эволюционном плане гомеостаз - это наследственно закреплённые адаптации организма к обычным условиям окружающей среды.

Различают следующие основные виды гомеостаза:

1) генетический

2) структурный

3) гомеостаз жидкой части внутренней среды (кровь, лимфа, межтканевая жидкость)

4) иммунологический.

Генетический гомеостаз - сохранение генетической стабильности благодаря прочности физико-химических связей ДНК и её способности к восстановлению после повреждения (репарация ДНК). Самовоспроизведение - фундаментальное свойство живого, оно основано на процессе редупликации ДНК. Сам механизм этого процесса, при котором новая нить ДНК строится строго комплементарно около каждой из составляющих молекул двух старых нитей, является оптимальным для точной передачи информации. Точность этого процесса высока, но всё же могут происходить ошибки при редупликации. Нарушение структуры молекул ДНК может происходить и в её первичных цепях вне связи с редупликацией под воздействием мутагенных факторов. В большинстве случаев происходит восстановление генома клетки, исправление повреждения, благодаря репарации. При повреждении механизмов репарации происходит нарушение генетического гомеостаза как на клеточном, так и на организменном уровнях.

Важным механизмом сохранения генетического гомеостаза является диплоидное состояние соматических клеток у эукариот. Диплоидные клетки отличаются большей стабильностью функционирования, т.к. наличие у них двух генетических программ повышает надёжность генотипа. Стабилизация сложной системы генотипа обеспечивается явлениями полимерии и другими видами взаимодействия генов. Большую роль в процессе гомеостаза играют регуляторные гены, контролирующие активность оперонов.

Структурный гомеостаз - это постоянство морфологической организации на всех уровнях биологических систем. Целесообразно выделить гомеостаз клетки, ткани, органа, систем организма. Гомеостаз нижележащих структур обеспечивает морфологическое постоянство вышестоящих структур и является основой их жизнедеятельности.

Клетке, как сложной биологической системе, присуща саморегуляция. Установление гомеостаза клеточной среды обеспечивается мембранными системами, с которыми связаны биоэнергетические процессы и регулирование транспорта веществ в клетку и из неё. В клетке непрерывно идут процессы изменения и восстановления органоидов, разрушаются и восстанавливаются и сами клетки. Восстановление внутриклеточных структур, клеток, тканей, органов в процессе жизнедеятельности организма происходит благодаря физиологической регенерации. Восстановление структур после повреждения - репаративной регенерации.

Гомеостаз жидкой части внутренней среды - постоянство состава крови, лимфы, тканевой жидкости, осмотического давления, общей концентрации электролитов и концентрации отдельных ионов, содержания в крови питательных веществ и т.д. Эти показатели даже при значительных изменениях условий внешней среды удерживаются на определённом уровне, благодаря сложным механизмам.

К примеру, одним из важнейших физико-химических параметров внутренней среды организма является кислотно-щелочное равновесие. Соотношение водородных и гидроксильных ионов во внутренней среде зависит от содержания в жидкостях организма (кровь, лимфа, тканевая жидкость) кислот - донаторов протонов и буферных оснований - акцепторов протонов. Обычно активную реакцию среды оценивают по иону H+. Величина pH (концентрация водородных ионов в крови) является одним из стабильных физиологических показателей и колеблется у человека в узких пределах - от 7,32 до 7,45. От соотношения водородных и гидроксильных ионов в значительной мере зависят активность ряда ферментов, проницаемость мембран, процессы синтеза белка и т.д.

В организме имеются различные механизмы, обеспечивающие поддержание кислотно-щелочного равновесия. Во-первых, это буферные системы крови и тканей (карбонатный, фосфатные буферы, тканевые белки). Буферными свойствами обладает и гемоглобин, он связывает углекислоту и препятствует её накоплению в крови. Сохранению нормальной концентрации водородных ионов способствует и деятельность почек, поскольку значительное количество метаболитов, имеющих кислую реакцию, выводится с мочой. Если перечисленные механизмы оказываются недостаточными, концентрация углекислоты в крови увеличивается, происходит некоторый сдвиг pH в кислую сторону. В таком случае возбуждается дыхательный центр, усиливается легочная вентиляция, что приводит к понижению содержания углекислоты и нормализации концентрации водородных ионов.

Чувствительность тканей к изменениям внутренней среды различна. Так сдвиг pH на 0,1 в ту или другую сторону от нормы приводит к значительным нарушениям деятельности сердца, а отклонение на 0,3 является опасным для жизни. Нервная система особенно чувствительна к снижению содержания кислорода. Для млекопитающих опасно колебание концентрации ионов кальция, превышающее 30% и т.д.

Иммунологический гомеостаз - поддержание постоянства внутренней среды организма путём сохранения антигенной индивидуальности особи. Под иммунитетом понимают способ защиты организма от живых тел и веществ, несущих на себе признаки генетически чужеродной информации (Петров, 1968).

Чужеродную генетическую информацию несут бактерии, вирусы, простейшие, гельминты, белки, клетки, включая изменённые клетки самого организма. Все перечисленные факторы являются антигенами. Антигены - это вещества, которые при введении в организм способны вызвать образование антител или другую форму иммунного реагирования. Антигены очень разнообразны, чаще ими являются белки, но это бывают и крупные молекулы липополисахаридов, нуклеиновых кислот. Неорганические соединения (соли, кислоты), простые органические соединения (углеводы, аминокислоты) не могут быть антигенами, т.к. не имеют специфичности. Австралийский учёный Ф.Бернет (1961) сформулировал положение, что основное значение иммунной системы состоит в распознавании «своего» и «чужого», т.е. в сохранении постоянства внутренней среды - гомеостаза.

Иммунная система имеет центральное (красный костный мозг, вилочковая железа - тимус) и периферическое (селезёнка, лимфоузлы) звено. Защитная реакция осуществляется лимфоцитами, образующимися в указанных органах. Лимфоциты типа В при встрече с чужеродными антигенами дифференцируются в плазматические клетки, которые выделяют в кровь специфические белки - иммуноглобулины (антитела). Эти антитела, соединяясь с антигеном, обезвреживают их. Такая реакция получила название гуморального иммунитета.

Лимфоциты типа Т обеспечивают клеточный иммунитет, уничтожая чужеродные клетки, например, отторжение трансплантата, и подвергшиеся мутации клетки собственного организма. По расчётам, приведённым Ф.Бернетом (1971), в каждой генетической смене делящихся клеток человека в течение одних суток накапливается около 10 - 6 спонтанных мутаций, т.е. на клеточном и молекулярном уровнях непрерывно происходят процессы, нарушающие гомеостаз. Т-лимфоциты опознают и уничтожают мутантные клетки собственного организма, таким образом обеспечивается функция иммунного надзора.

Иммунная система осуществляет контроль за генетическим постоянством организма. Эта система, состоящая из анатомически разобщённых органов, представляет функциональное единство. Свойство иммунной защиты достигло высшего развития у птиц и млекопитающих.

Регуляция гомеостаза осуществляется следующими органами и системами (рис. 91):

1) центральной нервной системой;

2) нейроэндокринной системой, включающей в свой состав гипоталамус, гипофиз, периферические эндокринные железы;

3) диффузной эндокринной системой (ДЭС), представленной эндокринными клетками, расположенными практически во всех тканях и органах (сердце, лёгкое, ЖКТ, почки, печень, кожа и др.). Основная масса клеток ДЭС (75%) сосредоточена в эпителии пищеварительной системы.

В настоящее время известно, что ряд гормонов одновременно присутствует в центральных нервных структурах и эндокринных клетках ЖКТ. Так гормоны энкефалины и эндорфины обнаружены в нервных клетках и эндокринных клетках поджелудочной железы и желудка. Холицистокинин выявлен в головном мозге и в 12-перстной кишке. Такие факты дали основание для создания гипотезы о наличии в организме единой системы клеток химической информации. Особенность нервной регуляции состоит в быстроте наступления ответной реакции, причём эффект её проявляется непосредственно в том месте, куда поступает по соответствующему нерву сигнал; реакция кратковременна.

В эндокринной системе регуляторные влияния связаны с действием гормонов, разносимых с кровью по всему организму; эффект действия длительный и не имеет локального характера.

Объединение нервных и эндокринных механизмов регуляции происходит в гипоталамусе. Общая нейроэндокринная система позволяет осуществлять сложные гомеостатические реакции, связанные с регуляцией висцеральных функций организма.

Гипоталамус обладает и железистыми функциями, продуцируя нейрогормоны. Нейрогормоны, попадая с кровью в переднюю долю гипофиза, регулируют выделение тропных гормонов гипофиза. Тропные гормоны регулируют непосредственно работу эндокринных желёз. Например, тиреотропный гормон гипофиза возбуждает работу щитовидной железы, повышая уровень тиреоидного гормона в крови. Когда концентрация гормона возрастёт выше нормы для данного организма, тиреотропная функция гипофиза угнетается и деятельность щитовидной железы ослабляется. Таким образом, для сохранения гомеостаза необходимо уравновешивание функциональной активности железы с концентрацией гормона, находящегося в циркулирующей крови.

На этом примере проявляется общий принцип гомеостатических реакций: отклонение от исходного уровня --- сигнал --- включение регуляторных механизмов по принципу обратной связи --- коррекция изменения (нормализация).

Некоторые эндокринные железы не испытывают прямой зависимости от гипофиза. Это островки поджелудочной железы, продуцирующие инсулин и глюкагон, мозговая часть надпочечников, эпифиз, тимус, околощитовидные железы.

Особое положение в эндокринной системе занимает тимус. В ней вырабатываются гормоноподобные вещества, которые стимулируют образование Т-лимфоцитов, и устанавливается взаимосвязь между иммунными и эндокринными механизмами.

Способность сохранять гомеостаз - одно из важнейших свойств живой системы, находящейся в состоянии динамического равновесия с условиями внешней среды. Способность к поддержанию гомеостаза неодинакова у различных видов, она высока у высших животных и человека, имеющих сложные нервные, эндокринные и иммунные механизмы регуляции.

В онтогенезе каждый возрастной период характеризуется особенностями обмена веществ, энергии и механизмами гомеостаза. В детском организме преобладают процессы ассимиляции над диссимиляцией, чем обусловлен рост, увеличение массы тела, механизмы гомеостаза ещё недостаточно созрели, что накладывает отпечаток на протекание как физиологических, так и патологических процессов.

С возрастом происходит совершенствование обменных процессов, механизмов регуляции. В зрелом возрасте процессы ассимиляции и диссимиляции, система нормализации гомеостаза обеспечивают компенсацию. При старении снижается интенсивность обменных процессов, ослабляется надёжность механизмов регуляции, происходит угасание функции ряда органов, одновременно развиваются новые специфические механизмы, поддерживающие сохранение относительного гомеостаза. Это выражается, в частности, в увеличении чувствительности тканей к действию гормонов наряду с ослаблением нервных воздействий. В этот период ослаблены адаптационные особенности, поэтому повышение нагрузки и стрессовые состояния легко могут нарушить гомеостатические механизмы и нередко становятся причиной патологических состояний.

Знание этих закономерностей необходимо для будущего врача, так как болезнь является следствием нарушения механизмов и путей восстановления гомеостаза у человека.

Внутренняя среда организма – совокупность жидкостей организма, находящихся внутри него, как правило, в определенных резервуарах и естественных условиях и никогда не соприкасающихся с внешней окружающей средой. Термин предложен франц.физиологом Клод Бернаром.
Клетки могут функционировать только в жидко среде. Кровь, тканевая жидкость и лимфа образуют внутреннюю среду организма. Основой внутренней среды организма является кровь, которая доставляет клеткам кислород, питательные вещества и удаляется продукты обмена. Однако кровь непосредственно не соприкасается с клетками организма. В тканях часть плазмы крови покидает кровеносные капилляры и превращается в тканевую жидкость. Избыток тканевой жидкости всасывается лимфотическими капиллярами и в виде лимфы оттекает по лимфатическим сосудам снова в кровь. Таким образом, кровь, тканевая жидкость и лимфа непосредственно циркулируют внутри организма, обеспечивая обмен веществ между клетками тела и окружающей средой. Ученые многих стран мира старались выяснить природу механизмов поддерживающих постоянство внутренней среды человека и высших животных.

Совокупность факторов и механизмов, обеспечивающих это постоянство, получило название – гомеостаза. Гомеостаз – способность биологических систем противостоять изменениям и сохранять динамическое постоянство состава и свойств организма.

Гомеостаз – относительно динамическое постоянство внутренней среды организма, обеспечивающее устойчивость его основных физиологических функций.

Клод Бернар (1878 год) – формулировка понятия гомеостаза.

Уолтер Кеннон ввел термин гомеостаз, его гипотеза – отдельные части организма устойчивы, так как устойчива окружающая их внутренняя среда.

Живой организм – открытая саморегулирующаяся система, которая развивается в тесном взаимодействии с окружающей средой. Изменения среды прямо или косвенно воздействуют на компоненты, вызывая в них соответствующие изменения.

Благодаря механизмам саморегуляции, эти изменения происходят в пределах нормы реакции и не вызывают серьезных нарушений физиологических функций.

Нарушение регуляторных механизмов приводят к срыву компенсаторных возможностей организма, снижению его устойчивости к постоянно меняющимся условиям среды, нарушениям условий гомеостаза и развитию патологий.

Механизмы гомеостаза должны быть направлены на поддержание уровня стационарного состояния, координацию процессов для устранения или ограничения влияния вредных факторов, оптимальное взаимодействие организма и среды в изменившихся условиях существования.

Компоненты гомеостаза:

Компоненты, обеспечивающие клеточные потребности: белки, жиры, углеводы; неорганические вещества; вода, кислород, внутренняя секреция.



Компоненты, влияющие на клеточную активность: осмотическое давление, температура, концентрация водородных ионов.

Виды гомеостаза:

Генетический гомеостаз . Генотип зиготы при взаимодействии с факторами окружающей среды определяет весь комплекс изменчивости организма, его адаптивной способности, то есть гомеостаз. Организм реагирует на изменения условий среды специфически, в пределах наследственно обусловленной нормы реакции. Постоянство генетического гомеостаза поддерживается на основе матричных синтезов, а стабильность генетического материала обеспечивается рядом механизмов (см. мутагенез).

Структурный гомеостаз. Поддержание постоянства состава и целостности морфологической организации клеток, тканей. Полифункциональность клеток повышает компактность и надежность всей системы, увеличивая ее потенциальные возможности. Формирование функций клеток происходит благодаря регенерации.

Регенерация:

1. Клеточная (прямое и непрямое деление)

2. Внутриклеточная (молекулярная, внутриорганоидная, органоидная)

Физико-химический гомеостаз.

Газовый гомеостаз: концентрация кислорода и углекислого газа в организме, обеспечивается системой внешнего дыхания. Факторы, регулирующие внешнее дыхание: минутный объем дыхания альвеолярного воздуха, зависти от активности дыхательного центра; содержание газов в крови и легочных капиллярах; диффузия газов через мембрану клеток крови, равномерный легочный кровоток адекватной вентиляции.

Кислотно-щелочной баланс организма:pH крови = 7.32-7.45 соотношение водородных и гидроксильных ионов зависит от содержания кислот, выступающих в качестве доноров протонов, и амфотерных оснований, являющихся акцепторами. Регуляция его обеспечивается буферными системами, тканевыми белками, коллагеновой субстанцией соединительной ткани, которая способна адсорбировать кислоты.

Осмотические свойства крови: осмотическое давление крови зависит от концентрации раствора и температуры, но не зависит от природы растворенного вещества и растворителя. Постоянство осмотических свойств крови обеспечивается водным балансом. Водный баланс организма поддерживается механизмами поступления воды и солей. Перераспределение воды и солей между клетками и внутриклеточными органоидами, выделение воды и солей в окружающую среду. Основой интеграции всего физико-химического гомеостаза является нейроэндокринная регуляция.

Физиологический гомеостаз.

Тепловой гомеостаз: поддержание содержание тепла. Важным условием теплового баланса служит движение среды, омывающей тело и его части, в котором происходит тепловой обмен, регуляция теплоизоляции обеспечивается за счет притока теплой крови из глубоких областей тела к его поверхности

Система гемостаза: активация свертывающей системы крови, необходимый уровень форменных элементов крови, восстановление свойств стенки сосудов.

Биохимический гомеостаз: поддержание на уровне обменных процессов, в частности анаболизма и катаболизма, баланс процессов синтеза и распада осуществляется путем изменения активности ферментов, скорости ферментативных реакций, индукцией биосинтеза белков и ферментов и регуляцией скорости распада биологически активных веществ.

Иммунологический гомеостаз.

Иммунная система защищает организм от экзогенных веществ, инфекционных агентов, несущих в себе генетически чужеродную информацию, а так же от патологически измененных клеток. Распознавание - разрушение - элиминация. Центральные органы иммунной системы – костный мозг и тимус. Периферические органы – селезенка и лимфоидная ткань. Костный мозг вырабатывает стимулятор антитела продуцентов, который активирует систему B-лимфоцитов, обеспечивающих гуморальное звено иммунитета, а тимус вырабатывает тимозин, активирующий выработку т-лимфоцитов. Поддержание иммунологического гомеостаза должно быть обеспечено необходимой концентрацией Т- и В-лимфоцитов.

Эндокринный гомеостаз: синтез и секреция гормонов, транспорт гормонов, специфический метаболизм гормонов на периферии и их экскреция, взаимодействие гормонов с клетками-мишенями, регуляция и саморегуляция функций желез внутренней секреции.

Все гомеостазы в целом составляют биологический гомеостаз , целостную систему разнообразных функций и показателей, обеспечивающих сохранение и поддержание нормальной жизнедеятельности организма в изменяющихся условиях среды.

Регуляция биологического гомеостаза:

Местная : осуществляется посредством положительных и отрицательных обратных связей, когда изменение одного показателя приводит к изменению другого, характеризуется автономностью, это свойство присуще любому компоненту живой системы.

Гуморальная регуляция , связана с поступлением во внутреннюю среду организма гуморальных факторов - медиаторов, гормонов, биологически активных веществ и т.д. гуморальная система реагирует на внешние воздействия медленно, т.к. не имеет связи с окружающей средой, но дает более стабильный и продолжительный эффект, обеспечивается железами внутренней секреции. На основе гуморальной регуляции развиваются приспособительные реакции на изменение внутренней среды организма.

Нервная регуляция: главный координатор всех биологических процессов, что обусловлено структурными и функциональными особенностями нервной системы: присутствие во всех органах и тканях, непосредственный контакт с внешней средой через рецепторы, высокая возбудимость, лабильность и точная направленность нервных импульсов и большая скорость проведения информации. В основе регуляции приспособительных реакций лежат рефлекторные процессы. Нервная регуляция обеспечивает изменение функциональной активности органов или функций в ответ на внешнее воздействие и адаптацию организма с внешней средой.

Уровни нейроэндокринной регуляции:

1. Мембрана клетки

2. Эндокринные железы

3. Гипофиз

4. Гипоталамус

Включение различных уровней нейрогуморальной регуляции определяется интенсивностью влияния фактора, степенью отклонения физиологических параметров и лабильностью адаптивных систем.

Вопрос 54.

Формулы