История инженерного дела в России (лекционный материал) Введение. Инженерное дело в WOW Битва за Азерот — гайд по прокачке Беспилотные летательные аппараты

Инженерное дело не стоит на месте. Учёные каждый день неустанно работают над тем, чтобы сделать жизнь простых обывателей и профессионалов на производстве проще, ускорить рабочие процессы и обеспечить качественную и сверхбыструю коммуникацию между жителями разных полушарий.

Беспилотные летательные аппараты

Беспилотные летательные аппараты или БПЛА - лакомая сфера деятельности для инженеров. Небольшие дроны и целые космические корабли дистанционного управления с каждым днём становятся всё больше похожими на плод воображения писателя-фантаста.

Так, в сентябре 2014 года мы рассказали о долгожданной инициативе по раздаче беспроводного Интернета летающими дронами. Задумка принадлежит португальской компании Quarkson, которые, в отличие от проекта Google Project Loon, планируют не просто разместить воздушные шары-роутеры над землёй, но запустить в небеса целую флотилию дронов.

Летательные аппараты Quarkson будут летать на высоте 3500 метров над уровнем моря и будут преодолевать расстояния в 42 тысячи километров. Каждый дрон будет работать без подзарядки до двух недель и выполнять самые разные задачи: раздавать Wi-Fi, контролировать состояние окружающей среды, производить аэрофотосъёмку и даже служить в разведывательных целях во время войны.

Напомним, что о похожей инициативе в 2013 году объявила компания Amazon: сетевой гигант планирует организовать доставку небольших товаров, купленных в интернет-магазине, не курьерами и не почтой, а именно беспилотниками.

Эффективная работа флотилии дронов не может быть обеспечена, если управление всеми членами "стаи" не налажено при помощи специальных алгоритмов. К счастью, в марте 2014 года инженеры из университета Этвоша Лорана в Будапеште продемонстрировали слаженное маневрирование квадрокоптеров, которые летали стаей без центрального управления.

Коммуникация летающих роботов обеспечивается посредством приёма-передачи радиосигналов, а ориентация в пространстве осуществляется благодаря системе GPS-навигации. В каждой роботизированной стае есть "вожак", за которым следуют остальные беспилотники.


В отличие от инциативы Quarkson, такие стаи венгерские инженеры планируют адаптировать исключительно под мирные цели - те же доставки покупок или в отдалённом будущем пассажирские рейсы.

Команда из Исследовательского центра Эймса и Стэнфордского университета в 2014 году задумалась об одной важной, но неочевидной проблеме - утилизации разрушенных при столкновениях беспилотников. Инженеры сконструировали первый в мире биоразлагаемый БПЛА и даже испытали его в ноябре.

Прототип изготовлен из особого вещества - мицелия - который уже широко применяется для изготовления биоразлагаемых упаковок. Однако некоторые детали учёные всё же планируют по-прежнему изготавливать из обычных материалов, чтобы обеспечить беспилотнику высокую производительность. Впрочем, пару лопастей и аккумулятор убрать с места крушения - не то же самое, что разобрать целый корпус летающего робота.

Авиакосмическая техника

В некоторых сферах деятельности человека заменить живой мозг с его интуицией и огромным спектром чувств беспилотником пока что не представляется возможным. Но модернизировать пилотируемые летательные аппараты всегда можно.

В ноябре 2014 года американское космическое агентство NASA испытало первый самолёт с крыльями-трансформерами. Тестированию подверглась новая система FlexFoil, которая призвана заменить стандартные алюминиевые закрылки, снизить расход топлива у самолётов и повысить аэродинамику корпуса.


Пока ещё не ясно, заменит ли новая технология уже используемые в авиационной промышленности, но первые тесты дали превосходные результаты. Возможно, FlexFoil найдёт своё применение даже в космосе.

Говоря о величественных просторах нашей Вселенной, невозможно не вспомнить об ещё одном громком достижении инженеров - лёгком и гибком скафандре будущего. Новая разработка инженеров из Массачусетского технологического института - это пластичный костюм, оснащённый тысячами катушек, которые позволят ткани сжаться прямо на теле космонавта и заключить его в безопасный кокон.


Катушки сокращаются, реагируя на тепло тела, а также обладают памятью формы. То есть последующие облачения в скафандр для каждого космонавта будут проще, чем самый первый раз. Пока что инженеры сконструировали только небольшой кусочек ткани-прототипа, но в будущем, они уверены, именно в таких костюмах будут прогуливаться по Луне и Марсу колонизаторы инопланетных миров.

Роботы и экзоскелеты

Каждый год робототехники выпускают с десяток машин, имитирующих анатомию и повадки различных животных. Они становятся более "умными" и ловкими, а программное обеспечение даёт им сверхчеловеческие возможности. Инженеры дарят возможность и каждому человеку почувствовать себя немного киборгом, примерив экзоскелет - особый костюм, который повышает мышечную силу или даже возвращает радость движения парализованным пациентам.

Впрочем, пока человек, даже имея феноменально сложно устроенный мозг, не способен справиться с абсолютно любым заданием, а именно этого инженеры хотят добиться от роботов. Подобно человеку, машина будущего будет черпать недостающие знания и инструкции из Интернета, но только не через поисковики, а при помощи вычислительной системы RoboBrain, разработанной в Корнельском университете.

Учёные придумали эту систему интеграции знаний, накопленных человечеством, в мозг-компьютер робота, чтобы позволить машинам ловко справляться с любыми бытовыми задачами. Так, робот сможет определить, например, каков объём кружки, какова температура кофе и как правильно из предметов, находящихся на кухне, приготовить вкусный капучино.


Исследователи в первую очередь стремятся придать роботам самостоятельности, то есть сконструировать такую машину и написать такое программное обеспечение, чтобы робот мог действовать без помощи со стороны человека. Ещё одним впечатляющим примером достижения в этой сфере является робот-оригами, который самостоятельно собирается при нагреве и передвигается по различным поверхностям.

Эта разработка принадлежит команде из Массачусетского технологического института и Гарвардского университета. Как поясняют инженеры, им удалось создать устройство со встроенной способностью к вычислению. Более того, роботы-оригами созданы из бюджетных материалов и универсальны в применении: небольшие боты могут стать основой самособирающейся мебели будущего или временных убежищ для пострадавших от природных катастроф людей.


Одно из самых ярких достижений робототехники в 2014 году - это исторический первый удар по мячу на чемпионате мира по футболу в Бразилии. И сделал этот удар Джулиано Пинто (Juliano Pinto), пациент с параличом нижних конечностей. Совершить невозможное Пинто позволил новый экзоскелет, спроектированный командой Мигеля Николелиса (Miguel Nicolelis), который потратил на разработку многие годы.

Экзоскелет не просто придаёт Пинто мышечную силу, но полностью контролируется сигналами мозга в режиме реального времени. Чтоы создать уникальный робокостюм Николелису и его коллегам пришлось провести массу экспериментов, завершившихся громкими открытиями. Так, учёные смогли объединить мозг двух крыс, находящихся на разных континентах, научили грызунов реагировать на невидимый инфракрасный свет и создали интерфейс для одновременного управления двумя виртуальными конечностями, который испытали на обезьянах.

Всё это привело к тому, что парализованный пациент смог вновь почувствовать свои нижние конечности.

Медицинская техника

Инженеры могут помочь не только паралитикам, но и практически любым пациентам. Без новейших достижений в сфере робототехники не существовала бы современная медицина. И в этом году было представлено ещё несколько впечатляющих прототипов.

Особое внимание стоит обратить на камеру, созданную учёными из университета Дьюка. Это устройство для съёмки в режиме реального времени позволяет получить снимки в очень высоком разрешении и таким образом диагностировать рак даже на самых ранних стадиях.

Новая гигапиксельная камера позволяет исследовать крупные участки кожи в мельчайших подробностях на предмет наличия меланомы - рака кожи. Такое обследование позволит вовремя заметить любые изменения в цвете и структуре кожи, быстро диагностировать заболевание и вылечить его. Напомним, что этот вид рака хоть и является самым смертоносным, но прекрасно поддаётся лечению на ранних стадиях.


За диагностикой всегда следует лечение, и лучше всего если это лечение - таргетное, то есть прицельное. Доставить лекарства прямо к поражённым клеткам позволит ещё одно изобретение, созданное в 2014 году. Крошечные наномоторы будут обеспечивать движения армии нанороботов, которые смогут отправлять агрессивные медицинские препараты прямо к раковым опухолям, не затрагивая при этом здоровые клетки. Таким образом, лечение от рака будет проходить незаметно, безболезненно и без побочных эффектов.

Высокотехнологичные материалы

Материалы, которые нас окружают, такие как стекло, пластик, бумага или дерево, вряд ли способны удивить нас своими свойствами. Но учёные научились создавать материалы с уникальными свойствами, используя самое обычное бюджетное сырьё. Они позволят проектировать настоящие футуристические конструкции.

К примеру, в феврале 2014 года инженеры из Техасского университета в Далласе представили мощнейшие в мире искусственные мышцы, созданные из обычной рыболовной лески и швейных ниток. Такие волокна способны поднять в 100 раз больше веса, чем природные человеческие мышцы, и генерировать в сотню раз больше механической энергии. А ведь сплести искусственную мышцу довольно просто - нужно всего лишь ювелирно точно наматывать лески из высокопрочного полимера на слои из швейных ниток.


Новая разработка может широко употребляться в быту в будущем. Из полимерных мышц можно будет создавать адаптирующуюся к погоде одежду, самозакрывающиеся теплицы и, разумеется, сверхсильных человекоподобных роботов.

К слову, роботы-гуманоиды, возможно, будут обладать не только сверхпрочными мышцами, но и гибкой бронёй. Инженеры из университета МакГилла в 2014 году вдохновились броненосцами и крокодилами и сконструировали броню из гексагональных стеклянных пластин на полимерной подложке. По сравнению с жёстким щитом гибкая броня оказалась на 70% прочнее.


Правда, в будущем, скорее всего, жёсткие пластины будут делать не из стекла, а из более высокотехнологичных материалов, таких как сверхпрочная керамика.

В июле 2014 года команда из Массачусетского технологического института создала материал, который позволит роботам менять своё агрегатное состояние с твёрдого на жидкое, прямо как в кино. Для этого инженеры использовали обычный воск и строительную пену - два бюджетных и вполне очевидных вещества, которые являются идеальным примером меняющих состояние субстанций.


При воздействии высоких температур воск плавится, и робот становится жидким. Так он протискивается в любые щели. Как только тепло уходит, воск застывает, заполняет поры пены, и робот вновь становится твёрдым. Учёные считают, что их изобретение найдёт себе применение и в медицине, и в спасательных операциях.

Домашняя техника

Создавать бытовых роботов и простые в применении устройства - одна из сложнейших задач инженерии. Обыватели не станут проходить обучение, чтобы воспользоваться особой техникой, и потому разработки должны быть простыми, полезными, а главное - стоить недорого.

Ещё в самом начале 2014 года британский изобретатель и владелец компании Dyson Джеймс Дайсон (James Dyson) объявил, что его инженеры займутся созданием бытового робота, который будет помогать хозяйкам по дому. Предприниматель выделил 5 миллионов фунтов стерлингов на выполнение этой задачи, которым займутся прежде всего инженеры из Имперского колледжа Лондона.


Работа уже идёт полным ходом, и когда она завершится, то многие сможгут приобрести себе роботизированного помощника, который будет не только стирать, гладить и убирать, но и сидеть с пожилыми и больными людьми, заниматься маленькими детьми и животными. Обязательное условие проекта - сколь возможно низкая себестоимость машин.

Работая на кухне, робот Dyson, возможно, будет частенько пользоваться недавним изобретением китайской компании Baidu - "умными" палочками, которые будут проверять качество пищи. Приборы оснащены индикатором и множеством датчиков, которые позволят определить, свежо ли блюдо или существует риск отравления.


Впрочем, пока не ясно, станут ли "умные" палочки коммерческим проектом. В ходе испытаний некоторые пользователи жаловались, что критерии у встроенной системы настолько строги, что найти подходящую пищу практически невозможно.

С кухни отправимся в кабинет. Обычная принтерная печать также пережила революцию в 2014 году. Сразу две впечатляющих разработки учёных позволят сэкономить на картриджах и бумаге, спасти сотни деревьев от вырубки и сделать печать проще и экологичнее.

Группа исследователей из Цзилиньского университета в Китае объявили в январе 2014 года, что печатать на бумаге можно не чернилами, а водой. Чтобы сделать это возможным команда химиков разработала особое покрытие для обычной бумаги, которое активирует молекулы красителя при воздействии воды. Через сутки жидкость испаряется и бумагу можно снова вставлять в принтер, а суток точно хватит, чтобы ознакомиться с большинством документов.


Позднее, в декабре 2014 года, учёные из университета Калифорнии в Риверсайде предложили заменить бумагу особыми пластинами, а чернила - окислительно-восстановительными красителями. Их технология подразумевает печать посредством воздействия ультрафиолетового излучения, которое оставляет на пластине лишь цветные буквы, а остальная площадь "бумаги" остаётся прозрачной.

Что касается повторного использования утилизированных предметов обихода, невозможно не вспомнить о проекте исследователей из института IBM Research. Эксперты подсчитали, что утилизированные ноутбуки почти всегда содержат рабочие аккумуляторы, способные питать достаточное количество лампочек, чтобы осветить целый дом.

Эксперимент показал, что после нехитрой переработки выброшенные на помойку компьютеры могут получить новую жизнь и осветить дома жителей развивающихся стран.

Итого

За 2014 год инженерия и техника, возможно, совершили самый большой скачок в будущее по сравнению с другими областями науки. Не стоит забывать, что без достижений в этой сфере не обойдётся ни одна фундаментальная область исследований.

Синонимом термина «инженерное дело» является слово техника (от др.-греч. τεχνικός τέχνη - «искусство», «мастерство», «умение»), обозначающее активную творческую деятельность, направленную на преобразование природы с целью удовлетворения разнообразных жизненных человеческих потребностей.

Не следует путать с термином «Техника (технические устройства) »
Творческое приложение научных принципов (а) к проектированию или разработке сооружений, машин, аппаратуры или процессов их изготовления, или к объектам, в которых эти устройства или процессы используются разрозненно или комплексно, или (б) к конструированию и эксплуатации вышеуказанных инженерных устройств в полном соответствии с проектом, или (в) к прогнозированию поведения инженерных устройств в определенных условиях эксплуатации - руководствуясь соображениями обеспечения их функциональности, экономичности в использовании и безопасности для жизни и имущества.

Настоящее время

Современное понимание инженерного дела подразумевает целенаправленное использование научных знаний в создании и эксплуатации инженерных технических устройств, являющихся результатом преобразовательной деятельности инженера, и охватывает три вида инженерно-технической деятельности :

  • исследовательская (научно-техническая) деятельность - прикладные научные исследования , технико-экономическое обоснование планируемых капиталовложений, планирование;
  • конструкторская (проектная) деятельность - конструирование (проектирование), создание и испытание прототипов (макетов, опытных образцов) технических устройств ; разработка технологий их изготовления (сооружения), упаковки, перевозки, хранения и проч. ; подготовка конструкторской/проектной документации;
  • технологическая (производственная) деятельность - организационная, консультационная и иная деятельность, направленная на внедрение инженерных разработок в практическую деятельность экономических субъектов с их последующим сопровождением (технической поддержкой) и/или эксплуатацией по поручению заказчика.

История инженерного дела

Истоки инженерного дела восходят к доисторической мифологической эпохе. Создание лука , колеса , плуга требовало умственной работы, умения обращаться с орудиями труда, использования творческих способностей. В качестве инженеров можно рассматривать легендарных Дедала и Ноя . Первым известным по имени инженером был египтянин Имхотеп , который руководил строительством пирамиды Джосера (III тыс. до н.э.) . Самым известным инженером Античности считается Архимед .

Первой попыткой рассмотреть инженерное дело как особый род деятельности можно считать труд Витрувия «Десять книг об архитектуре » (лат. De architectura libri decem ). В нём делаются первые известные попытки описать процесс деятельности инженера. Витрувий обращает внимание на такие важные для инженера методы как «размышление» и «изобретение», отмечает необходимость создания чертежа будущего сооружения. Однако большей частью Витрувий основывается в своих описаниях на практическом опыте. В античные времена теория сооружений находилась ещё в самом начале своего развития.

Важнейшим этапом в инженерном деле стало применение масштабных чертежей. Этот способ развился в XVII веке и оказал сильнейшее влияние на дальнейшую историю инженерии. Благодаря ему появилась возможность разделить инженерный труд на собственно разработку идеи и её техническое воплощение. Имея перед собой на бумаге проект какого угодно большого сооружения, инженер избавлялся от узости взгляда ремесленника, зачастую ограниченного только той деталью, над которой он трудится в данный момент.

Первым инженерно-техническим учебным заведением России начавшим давать систематическое образование становится основанная в 1701 году Петром I Школа математических и навигационных наук . Образование военных инженеров началось ещё во времена правления Василия Шуйского . На русский язык был переведён «Устав дел ратных», где среди прочего рассказывалось и о правилах обороны крепостей, строительстве оборонительных сооружений. Обучение вели приглашённые иностранные специалисты. Но именно Петру I принадлежит выдающаяся роль в развитии инженерного дела в России. В 1712 году в Москве открывается первая инженерная школа, а в 1719 году вторая инженерная школа в Петербурге. В 1715 году создается Морская академия , в 1725 году открывается Петербургская академия наук с университетом и гимназией.

Первым учебником по инженерному делу можно считать выпущенный в 1729 году учебник для военных инженеров «Наука инженерного дела» француза Бернара Фореста де Белидора .

В течение XIX века продолжалось создание различных специализаций и направлений высшего инженерного образования происходившее в процессе перехода наиболее передовых инженерно-технических учебных заведений Российской империи к системе высшего образования, что привело к качественному развитию, так как каждое учебное заведение создавало не существовавшую до этого свою собственную программу нового направления или специализации высшего инженерного образования, заимствуя передовой опыт других, сотрудничая и обмениваясь инновациями. Одним из выдающихся организаторов этого процесса был Дмитрий Иванович Менделеев .

В Англии специалистов-инженеров готовили следующие учреждения: (англ. ) (основан в 1818 году), (англ. ) (1847 год), (англ. ) (1860 год), (англ. ) (1871 год).

Инженерное дело как профессия

Специалист, занимающийся инженерным делом, называется инженером . В современной экономической системе, деятельность инженера - это совокупность услуг в области инженерно-технической деятельности. Деятельность инженера в отличие от деятельности других представителей творческой интеллигенции (педагогов, врачей, актеров, композиторов и др.) по своей роли в общественном производстве является производительным трудом, непосредственно участвующим в создании национального дохода . Посредством инженерной деятельности, инженер реализует свои научные знания и практический опыт для решения какой-либо технической задачи на различных этапах жизненного цикла продукции .

С расширением и углублением научных знаний произошла профессиональная специализация инженерной профессии по дисциплинам. В настоящее время продуктивная инженерная деятельность возможна исключительно в рамках коллектива инженеров, каждый из которых специализируется в определенной области инженерии. На рынке инженерных услуг действуют инженерные организации , которые могут принимать форму научно-исследовательских институтов, проектно-конструкторские бюро, научно-производственных объединений (нпо) и т. д. В условиях рынка, оказываемые инженерными организациями услуги разнообразны по специализации, содержанию и качеству. Многие инженерные организации оказывают комплекс услуг, зачастую включающий услуги, выходящие за рамки традиционной инженерии в область реализации инженерных разработок. Так, помимо научно-исследовательских, проектно-конструкторских и консультационных услуг, многие крупные инженерные организации также оказывают услуги в области строительства зданий и других строительных сооружений , управления проектами , обслуживания и оперативного управления сложными инженерно-техническими объектами на стадии их эксплуатации и в других областях.

Начало 21 века дало импульс открытий и создание новых инженерных достижений, которые установили новый темп в предстоящее десятилетие. От роста коммуникационных сетей, которые мгновенно связали людей во всем мире до понимания физической науки, которая создает основу для будущих достижений.

За небольшой промежуток 21 века было много больших инженерных и научных достижений, начиная от разработки смартфона до строительства большого адронного коллайдера.

Главные инженерные достижения 21 века:

Большой адронный коллайдер

Несколько проектов XXI века реализовано от карликового размера до масштабного большого адронного коллайдера. Построенный с 1998 до 2008 года сотнями блестящих умов коллайдер является одним из самых передовых научно-исследовательских проектов, которые когда-либо создавались. Его цель состоит в том, чтобы доказать или опровергнуть существование бозона Хиггса и других частиц физики соответствующих теорий. разгоняет две частицы высоких энергий в противоположных направлениях через кольцо 27-километрой длины для того, чтобы им столкнуться и наблюдать последствия. Частицы движутся почти со скоростью света в двух сверхвысоких вакуумных трубках и взаимодействуют с мощными магнитными полями, поддерживаемые с помощью сверхпроводящих электромагнитов. Эти электромагниты специально охлажденные до температуры холоднее, чем космическое пространство до -271.3 ° C и специальных электрических кабелей, которые поддерживают сверхпроводящее состояние.

Интересный факт : совпадение данных, подтверждающих наличие частицы Хиггса было проанализировано крупнейшей в мире вычислительной сеткой в 2012 году, состоящий из 170 вычислительных средств в 36 странах.

Самая большая плотина

Плотина «Три ущелья» образовала гидроэлектростанцию, занимающую всю ширину реки Янцзы недалеко от города Саньдоупин, Китай. Рассматривается как подвиг исторического масштаба со стороны китайского правительства и является крупнейшей электростанцией в мире, производящей в общей сложности 22 500 МВт (в 11 раз больше, чем Плотина Гувера) электроэнергии. Представляет из себя массивную конструкцию 2335 м в длину, 185 м над уровнем моря. 13 городов и свыше 1600 деревень были затоплены под водохранилище, что считается крупнейшим в своем роде. Стоимость всего проекта 62 млрд долларов.

Самое высокое строение Бурдж Халифа

Самое высокое строение находится в Дубай, Объединенные Арабские Эмираты. Название Бурдж Халифа в переводе «Башня Халифа», является самым высоким из всех небоскребов, высотой 829.8 м. Официально открыта в январе 2010 года, Бурдж Дубай является центральным местом основного делового района Дубая. Всё в башне рекордное: наибольшая высота, высокая открытая смотровая, прозрачный пол, высокоскоростной лифт. Стиль архитектуры производный от структурирования системы исламского государства.

Виадук Мийо

Виадук Мийо во Франции является самым высоким мостом во всей человеческой цивилизации. Одна из его опор имеет высоту 341 метр. Мост охватывает долину реки Тарн вблизи Мийо в южной части Франции и представляет выдающуюся целостную структуру, с учетом её стройной элегантности.

Средние века (Средневековье) - исторический период, следующий после Античности и предшествующий Новому времени.

Начиная с XII-XIII веков в Европе произошёл резкий подъём развития технологий и увеличилось число нововведений в средствах производства, менее чем за столетие было сделано больше изобретений, чем за предыдущую тысячу лет.

Были изобретены пушки, очки, артезианские скважины и кросс-культурные внедрения: порох, шёлк, компас и астролябия пришли с Востока. Были также большие успехи в судостроении и в часах. В то же время огромное количество греческих и арабских работ по медицине и науке были переведены и распространены по всей Европе.

Этот подъем в развитии технологий произошел благодаря таким ученым, физикам, инженерам, как Ф. Бэкон, Галилей, Х. Гюйгенс, Р. Бэкон, Леонардо да Винчи, Н. Коперник, Б. Паскаль, Э. Торричелли, В. Лейбниц, И. Ньютон, С. Томас и многие другие.

Я хочу рассказать о Галилео Галилее.

Галилео Галилей (1564-1642), 15 февраля 1564 г. в университетском городе Великого герцогства Тосканского Пизе родился Галилео Галилей.

Родители были первыми учителями Галилео. Благодаря ним мальчик получил начальное классическое, музыкальное и литературное образование.

В 1575 г. семейство вернулось во Флоренцию, где 11-летнего Галилео отдали в светскую школу при монастыре. Здесь он изучал языки, риторику, поэзию, музыку, рисование и простейшую механику.

В сентябре 1581 г. Галилео стал студентом Пизанского университета. Занимался Галилео главным образом самостоятельно, штудируя учебники по медицине, труды Аристотеля и особенно Платона, которого полюбил за математический склад ума. Он увлёкся изготовлением машин, которые были описаны в трудах Архимеда. В 1582 г. он сделал несколько маятников. Наблюдая за их качаниями, Галилео открыл закон изохронности (от греч. "изос" - "равный", "одинаковый", "хронос" - "время") колебаний: период колебаний груза, подвешенного на нити, зависит только от длины нити и не зависит от массы и размаха колебаний.

На втором курсе Галилео попал на лекцию по геометрии, увлёкся математикой и очень жалел, что не может бросить медицину. Именно в это время он впервые познакомился с физикой Аристотеля, с работами древних математиков - Евклида и Архимеда (последний стал его настоящим учителем). Оставшись без средств, в 1585 г. (у его отца нечем было платить за дальнейшее обучение) Галилей вернулся во Флоренцию. Здесь ему удалось найти замечательного учителя математики Остилио Риччи, который на своих занятиях обсуждал не только чисто математические проблемы, но и применял математику к практической механике, в особенности к гидравлике. Результатом четырехлетнего флорентийского периода жизни Галилея стало небольшое сочинение "Маленькие гидростатические весы".

Работа преследовала чисто практические цели: усовершенствовав уже известный метод гидростатического взвешивания, Галилей применил его для определения плотности металлов и драгоценных камней. Он изготовил несколько рукописных копий своей работы и попытался их распространить. Этим путем он познакомился с известным математиком того времени - маркизом Гвидо Убальдо дель Монте, автором Учебника по механике. Монте сразу оценил выдающиеся способности молодого ученого и, занимая высокий пост генерал - инспектора всех крепостей и укреплений в герцогстве Тосканском, смог оказать Галилею важную услугу: по его рекомендации в 1589 последний получил место профессора математики в том самом Пизанском университете, где ранее был студентом. Ко времени пребывания Галилея на кафедре в Пизе относится его труд о движении.

В нем он впервые приводит доводы против аристотелевского учения о падении тел. Позже эти доводы были сформулированы им в виде закона о пропорциональности пути, пройденного телом, квадрату времени падения (по утверждению Аристотеля, "в безвоздушном пространстве все тела падают бесконечно быстро").

В 1592 Галилей занял кафедру математики Падуанского университета в Венецианской республике. Он должен был преподавать геометрию, механику, астрономию. Курс астрономии он читал, оставаясь в рамках официально принятых воззрений Аристотеля - Птолемея, и даже написал краткий курс геоцентрической астрономии. В первые годы своего профессорства Галилей занимался главным образом разработкой новой механики, построенной не по принципам Аристотеля. Он сформулировал более четко "золотое правило механики", которое вывел из открытого им более общего принципа, сформулированного в Трактате по механике.

В Падуанский период жизни Галилея (1592-1610) созрели его основные работы из области динамики: о движении тела по наклонной плоскости и тела, брошенного под углом к горизонту, к этому же времени относятся исследования о прочности материалов. Однако из всех своих работ того времени Галилей опубликовал только небольшую брошюру об изобретенном им циркуле, позволявшем производить различные расчеты и построения.

Падуанский период - время наивысшего расцвета научной деятельности Галилея. Оно стало самым счастливым в его жизни. Слушателями его общедоступных лекций были молодые аристократы, желавшие получить образование в области военно-инженерных дисциплин. Для них Галилей читал курсы по фортификации и баллистике. Он открыл в Пизе мастерскую, где изготовлялись различные механизмы и приборы, в том числе изобретённые им самим.

Здесь был сделан термоскоп Галилея - предшественник современного термометра, а также прибор для измерения частоты - метроном. Рукописные тексты его лекций, пособия по механике и астрономии были очень популярны не только в Италии, но и во всей Европе.

10 октября 1604 г. в созвездии Змееносца вспыхнула неизвестная ранее звезда. В максимуме блеска она была ярче Юпитера.

Галилей наблюдал её до конца 1605 г. Теперь известно, что это была вспышка сверхновой звезды в нашей Галактике. Звезда была в одном и том же месте небесной сферы, поэтому Галилей утверждал, что она находится гораздо дальше от Земли, чем Луна и планеты. Он предложил такую гипотезу: новая звезда является плотным скоплением земных испарений, освещаемых Солнцем. В августе 1609 г. Галилео Галилей изготовил трубу с увеличением в 30 раз. Труба имела длину 1245 мм., объективом у неё была выпуклая очковая линза диаметром 53 мм., а плосковогнутый окуляр имел оптическую силу - 25 диоптрий. Использовано там было вовсе не очковое стекло, как принято думать с подачи самого Галилея. Он, видимо, понял, как можно задавать увеличение трубы, но предпочитал об этом не писать.

Его телескоп был на порядок мощнее и лучше всех зрительных труб того времени. Но главное, Галилей первым понял, что основное научное назначение зрительной трубы - это наблюдение небесных тел. С 30-кратной трубой Галилей сделал все свои телескопические открытия. Она до сих пор хранится в музее во Флоренции.

Прежде всего, Галилей приступил к наблюдениям Луны. Он увидел лунный пейзаж - цирки и кратеры, горные цепи и вершины, разглядев в телескоп отбрасываемые ими тени. На основании своих наблюдений Галилей пришел к выводу, что Луна является таким же каменистым телом, как и Земля. Галилей обнаружил фазы у Венеры и открыл четыре спутника Юпитера, которые теперь называют галилеевскими. Телескоп Галилея впервые разложил на звезды некоторые туманные пятна на небе. Так, сплошное сияние Млечного Пути оказалось гигантским скоплением звезд. Таким образом, Галилей является первооткрывателем Галактики.

В марте 1610 г. вышло сочинение Галилея "Звёздный вестник, открывающий великие и в высшей степени удивительные зрелища...", оповестившее мир о новых астрономических открытиях.

Никогда ещё научные открытия не производили столь ошеломляющего впечатления на культурный мир. Галилей стал знаменит. Все наблюдения Галилей описал в работе "Звездный вестник".

В октябре 1610 Галилей сделал новое сенсационное открытие: он наблюдал фазы Венеры. Объяснение этому могло быть только одно: движение планеты вокруг Солнца и изменение положения Венеры и Земли относительно Солнца. В сентябре Священная коллегия вызвала Галилея в Рим. Галилея признали виновным в нарушении церковных запретов и приговорили к пожизненному тюремному заключению. Он был болен, однако его просьбу об отсрочке отклонили. 70-летний старец прибыл в Рим 13 февраля 1633 г. и остановился на вилле Медичи. Процесс начался в апреле. Галилей выбрал тактику отговорок и увёрток, избегал ясных высказываний. Но утомительные допросы, угроза пыток сломили его.

После объявления приговора он, стоя на коленях, произнёс отречение от своих "заблуждений". Папа заменил тюремное заключение ссылкой на загородной вилле Великого герцога. Позже Галилея перевезли во Флоренцию и заключили на его собственной вилле Арчетри без права выезда.

Последние годы жизни учёного протекали под строгим надзором инквизиции, Галилей почти всё время болел и постепенно терял зрение.

Инженерное дело в античном мире

Сегодня трудно судить о времени зарождения искусств и ремесел, корни которых теряются в глубине тысячелетий.

История развития инженерного дела берет свое начало со времен зарождения цивилизаций (в Египте - 2 тысячелетие до н.э.) Развитие земледелия вызвало необходимость перехода к оседлому образу жизни, а вместе с тем к оборудованию жилища.

Переход первобытных общин к оседлости дает возможность развитию, наравне с земледелием, животноводству, гончарным, прядильным, ткацким, мельничному и кузнечному ремеслам. Такая дифференциация трудовой деятельности была вызвана потребностью создания орудий труда, необходимых для каждого ремесла.

Человечество всегда гордилось своими техническими достижениями. При обновлении техники бережно относились к сохранению достижений былых времен. Древнему миру мы обязаны многими техническими открытиями, определившими судьбу нашей цивилизации. Первые египетские пирамиды строились примерно 3 тысячи лет до н.э. Для сооружения самой высокой из них - пирамиды фараона Хуфу (Хеопса) - потребовалось 2330000 каменных глыб, средний вес которых равен 2.5 тоннам. При сооружении храмов, колоссальных статуй и обелисков вес отдельных глыб достигал десятков сотен тонн. Это свидетельствует о том, что народы, создававшие великие цивилизации, уже тогда были хорошо знакомы с такими механическими орудиями, как рычаг и клин. Величайшим открытием того времени является колесо.

Сложно однозначно определить дату появления колеса. Большинство ученых полагает, что колесо (или круг) впервые применили около 3500 г. до н.э. гончары в Месопотамии (современный Ирак), либо в центральной или Восточной Европе. Первый датированный документ об использовании колеса для перевозки - месопотамская мозаика (3200 г до н.э.). Ha ней изображена повозка на цельных колесах.

Однако безвестные изобретатели того времени не называли себя инженерами. Впервые инженерами стали называть группу людей, имеющих определенную квалификацию и находящихся на службе при армии с целью обеспечения различных технических работ, в Древнем Риме. B функции инженеров того времени входило строительство мостов, каналов, резервуаров, акведуков, дорог, туннелей, гаваней. Они конструировали большие дренажные системы, фортификационные сооружения, руководили созданием и эксплуатацией военных машин.

Труд инженеров уже тогда, несмотря на низкую степень разделения труда, должен был быть отнесен к преимущественно умственному: инженеры не строили сами, а руководили постройкой, проектировали сооружения. Вместе с тем их труд был далек от труда ученых, он практически не основывался на теоретических знаниях, а был продуктом интуиции и опыта. Инженеры этого периода занимали промежуточное положение между учеными и ремесленниками. Их главной миссией было использование известных приемов постройки и создания техники, а также технологический контроль процесса производства.

B античном обществе не существовало профессиональной группы, исключительной функцией которой была бы разработка новой техники. Эту задачу решали представители разных социальных групп: крупные изобретения, основанные на сознательном использовании законов и принципов теоретической науки, рождались в наиболее образованном слое общества, в его интеллектуальной элите. Например: Архимед был сыном сиракузского тирана, Ктезибий - другой гениальный механик и инженер - служил при дворе и занимался изготовлением диковинных игрушек-автоматов.

Изобретения не столь значительные, а также многочисленные технические усовершенствования были плодом деятельности инженеров и ремесленников, стоящих весьма близко друг к другу в социальной иерархии.

Единственной сферой, где чувствовалась острая потребность в изобретениях, было военное дело. Античные общества, с их развитой системой рабства, требовали постоянного пополнения армии рабов, а это значит ведения войн. Развитие технических средств нападения и защиты, создание новых видов оружия, возведение бастионов, изготовление средств для разрушения укреплений и т.п. стало основным делом инженера. От оснащения армии зависело существование государства, т.к. решался вопрос о его жизни или смерти. Поэтому армию по праву можно считать колыбелью инженерной профессии.

B римской армии по мере развития средств вооруженной борьбы формируются два типа инженерных задач: первый связан с фортификацией, второй - с артиллерией.

Фортификационные инженеры представляют собой группу хорошо обученных специалистов, знающих, как надо строить дороги и мосты, акведуки и туннели. Под руководством военных инженеров в Риме часто велось гражданское строительство, использующее дешевый неквалифицированный труд рабов и легионеров. Высокий профессиональный уровень инженеров этого периода может быть подтвержден сохранившимися до настоящего времени крупными ансамблями, амфитеатрами (Колизей в Риме), театрами, термами, крытыми рынками, инсулами (5-6 этажные дома для малоимущих). Древнейшие каменные здания уже тогда возводились на плоских каменных глыбах, служивших фундаментом для каменных стенных блоков. B качестве вяжущих материалов римские строители использовали бетон. C падением Римской империи использование бетона прекратилось и возобновилось лишь в XVIII в. в западноевропейских странах.

Античные армии располагали богатым арсеналом военных машин, применяемых в осадной войне. B V в. до н.э. в Греции использовались различные машины для метания дротиков, камней, зажигательных снарядов. До нас дошло имя инженера Диада, служившего при Александра Македонском, который руководил осадой Тира и других городов и широко использовал изобретенные или усовершенствованные им военные механизмы.

Наибольшего расцвета военная техника достигла в римской армии. Каждый легион имел “артиллерию” в виде 55 карбаллист, метавших тяжелые стрелы и 10 ангар - метавших тяжелые камни. Баллисты и ангары перевозились на вьюке или на телеге с воловьей упряжкой и требовали до 11 человек прислуги каждая. (Баллиста - древняя метательная машина. Приводилась в действие силой упругости скрученных волокон. Дальность метания тяжелых стрел - окованных железом бревен длинной до 3.5 м достигала 400-800 м.). Римские метательные машины достигали гигантских размеров. Так, например, гелёполь имела девять этажей и приводилась в действие усилиями 3400 человек (гелёполь - передвижная многоэтажная башня, применяющаяся при осаде крепости. Башня имеет бревенчатый каркас с междуэтажными перекрытиями. B стенах каждого этажа устраивались отверстия для стрельбы - бойницы. Ha верхних этажах находились перекладные мостики для перехода из гелёполи на крепостную стену).

Таким образом, мы можем судить, что легионеры армии античного мира обладали достаточно обширными знаниями, позволявшими им решать сложнейшие задачи создания военной техники и осуществлять строительство как военных сооружений, так и строительство культовых и жилищных объектов. Люди, обслуживавшие военные машины, были не солдатами, а военными ремесленниками - фабри и составляли особую цеховую корпорацию. Руководители бригад фабри не имели армейского чина, а относились к мастерам.

Подъем на качественно новый технический уровень строительства в III-I вв. до н.э. обуславливает появление в обществе гражданских инженеров. B ходе дальнейшего разделения труда среди гражданских инженеров происходит выделение двух относительно самостоятельных отраслей строительного дела: строительство жилых зданий закрепляется за архитекторами, строительство коммунальных, ирригационных и транспортных сооружений за инженерами.

Под “архитектурой” в античном обществе понималась вся совокупность технических наук того времени: строительство, создание кораблей, машин, конструирование часов. Мастерству архитектора придавалось большое значение и его в Риме называли руководителем строительства. Считалось, что для получения этой профессии необходимы: врожденные способности, знания и опыт. Причем, кроме знаний прикладных и практических, архитектор должен был быть и философски образованным человеком.

Для получения теоретических знаний и формальных документов, удостоверяющих получение необходимых знаний, в этот период еще не было государственных институтов, и система подготовки во многом напоминала цеховую: “ученик - подмастерье - мастер”. B этот период происходит разделение труда по уровню его сложности. Наиболее простые операции достаются ученикам, более сложная работа поручается подмастерьям, а самый квалифицированный труд ремесленники-мастера оставляют за собой. Ho в некоторых областях инженерного дела появились и анонимная литература и авторские работы. До нашего времени дошли авторские работы Марка Витрувия Поллиона - “Десять книг об архитектуре”. Встречаются ссылки на работы более раннего периода (например, Дилона “О пропорциях священных построек”, Силена “О пропорциях коринфских построек”), в которых приводились чертежи и расчеты. B этот период появляются и первые теоретические труды по физике, механике - Аристотель (384-322 г. до н.э.) - “Физика”, “О небе”, “О возникновении и уничтожении”, “О метеорах”; Архимед (287-212 г. до н.э.) - трактат “О равновесии плоских фигур или о центрах тяжести плоских фигур”, трактат “О плавающих телах”; Герои Александрийский (I в. н.э.) - “Механика Герона”, состоящая из 3-х книг (1-я книга - теоретические вопросы, 2-я - описание рычага, клина, ворота, винта и блока, 3-я книга - описание приборов для поднятия тяжестей). Герону принадлежат и первые труды по прикладной механике. B трактате “Пневматика” описаны механизмы, приводимые в движение нагретым или сжатым воздухом или паром, трактат “Об автоматах” содержит описание некоторых самодвижущихся приборов и автоматов, трактат “Белопойика” содержит описание основ античной артиллерии, конструкции луков, катапульт и других видов оружия. Им были созданы: сифон - для автоматического открывания дверей храма; эолипил - прибор, явившийся прообразом паровой турбины; годомер - устройство для автоматического отсчета пройденного экипажем расстояния; автомат для продажи священной воды и др.

Наличие первых теоретических разработок античного мира позволило архитекторам и гражданским инженерам накапливать теоретические знания, изучая опыт предшественников. Однако, ни архитекторы, ни инженеры античного мира не были отнесены к ученым мужам, их считали “заурядными работягами”, людьми второго сорта, находящимися ближе к ремесленникам.

Сегодня с полной уверенностью можно сказать, что античное рабовладельческое общество является прародителем инженерного дела т.к. именно в этот период инженерное дело впервые приобрело признаки профессии: регулярное воспроизводство, доход от занятия, систему полученния знаний. B период расцвета Римской империи инженеры становятся многочисленной группой. Происходит внутрипрофессиональное разделение труда: наряду с военными инженерами появляются инженеры гражданские, специализирующиеся в строительстве, коммунальном хозяйстве, мелиорации и ирригации. Однако этот период относится к доинституциональному, т.к. не определены каналы рекрутации и не решены проблемы формализации образования.

Уважаемые гости, продолжение читайте .

Плотность