Ионный коэффициент активности. Термодинамическая и электростатическая теория растворов электролитов

Электролиты – это химические соединения, которые в растворе полностью или частично диссоциируют на ионы. Различают сильные и слабые электролиты. Сильные электролиты диссоциируют на ионы в растворе практически полностью. Примерами сильных электролитов могут служить некоторые неорганические основания (NaOH) и кислоты (HCl, HNO 3) , а также большинство неорганических и органических солей. Слабые электролиты диссоциируют в растворе только частично. Доля продиссоциировавших молекул от числа первоначально взятых называется степенью диссоциации. К слабым электролитам в водных растворах относятся почти все органические кислоты и основания (например CH 3 COOH , пиридин) и некоторые органические соединения. В настоящее время в связи с развитием исследований неводных растворов доказано (Измайлов и др.), что сильные и слабые электролиты являются двумя состояниями химических элементов (электролитов) в зависимости от природы растворителя. В одном растворителе данный электролит может быть сильным электролитом, в другом – слабым.

В растворах электролитов наблюдается, как правило, более значительные отклонения от идеальности, чем в растворе неэлектролитов той же концентрации. Объясняется это электростатическим взаимодействием между ионами: притяжением ионов с зарядами разных знаков и отталкиванием ионов с зарядами одного знака. В растворах слабых электролитов силы электростатического взаимодействия между ионами меньше по сравнению с растворами сильных электролитов той же концентрации. Это объясняется частичной диссоциацией слабых электролитов. В растворах сильных электролитов (даже в разбавленных растворах) электростатическое взаимодействие между ионами велико и их нужно рассматривать как идеальные растворы и использовать метод активности.

Рассмотрим сильный электролит M X+ , A X- ; он полностью диссоциирует на ионы

M X+ A X- = v + M X+ + v - A X- ; v = v + + v -

В связи с требованием электронейтральности раствора химический потенциал рассматриваемого электролита (в целом) μ 2 связан с химическими потенциалами ионов μ - μ + соотношением

μ 2 = v + μ + + v - μ -

Химические потенциалы составляющих электролита связаны с их активностями следующими уравнениями (в соответствии с выражением II. 107).

(VII.3)

Подставляя эти уравнения в (VI.2), получаем

Выберем стандартное состояние μ 2 0 таким образом, чтобы между стандартными химическими потенциалами μ 2 0 ; μ + 2 ; μ - 0 было справедливо соотношение по форме аналогичное уравнению VII.2

(VII.5)

С учетом уравнения VII.5 соотношение VII.4 после сокращения одинаковых слагаемых и одинаковых множителей (RT) приводится к виду

Или (VII.6)

В связи с тем, что активности отдельных ионов не определяются из опыта введем понятие средняя активность ионов электролита как среднее геометрическое из активностей катиона и аниона электролита:

; (VII.7)

Среднюю активность ионов электролита можно определить из опыта. Из уравнений VII.6 и VII.7 получаем.

Активности катионов и анионов можно выразить соотношениями

a + = y + m + , a - = y - m - (VII.9)

где y + и y - - коэффициенты активности катиона и аниона; m + и m - - моляльность катиона и аниона в растворе электролита:

m + = m v + и m - = m v - (VII.10)

Подставляя значения a + и a - из VII.9 и VII.7 получаем

(VII.11)

где y ± - средний коэффициент активности электролита

(VII.12)

m ± - средняя моляльность ионов электролита

(VII.13)

Средний коэффициент активности электролита y ± представляет собой среднее геометрическое из коэффициентов активности катиона и аниона, а средняя концентрация ионов электролита m ± - среднее геометрическое из концентраций катиона и аниона. Подставляя значения m + и m - из уравнения (VII.10) получаем

m ± = m v ± (VII.14)

где (VII.15)

Для бинарного одно-одновалентного электролита МА (например NaCl ), y + = y - = 1 , v ± = (1 1 ⋅ 1 1) = 1 и m ± = m ; средняя моляльность ионов электролита равна его моляльности. Для бинарного дву-двухвалентного электролита МА (например MgSO 4 ) также получим v ± = 1 и m ± = m . Для электролита типа M 2 A 3 (например Al 2 (SO 4) 3 ) и m ± = 2,55 m . Таким образом, средняя моляльность ионов электролита m ± не равна моляльности электролита m .

Для определения активности компонентов нужно знать стандартное состояние раствора. В качестве стандартного состояния для растворителя в растворе электролита выбирают чистый растворитель (1-стандартное состояние):

x 1 ; a 1 ; y 1 (VII.16)

За стандартное состояние для сильного электролита в растворе выбирают гипотетический раствор со средней концентрацией ионов электролита, равной единице, и со свойствами предельно разбавленного раствора (2-е стандартное состояние):

Средняя активность ионов электролита a ± и средний коэффициент активности электролита y ± зависят от способа выражения концентрации электролита (x ± , m, c ):

(VII.18)

где x ± = v ± x; m ± = v ± m; c ± = v ± c (VII.19)

Для раствора сильного электролита

(VII.20)

где M 1 - молекулярная масса растворителя; M 2 - молекулярная масса электролита; ρ - плотность раствора; ρ 1 - плотность растворителя.

В растворах электролитов коэффициент активности y ±x называют рациональным, а коэффициенты активности y ±m и y ±c - практически средними коэффициентами активности электролита и обозначают

y ±m ≡ y ± и y ±c ≡ f ±

На рисунке VII.1 приведена зависимость средних коэффициентов активности от концентрации для водных растворов некоторых сильных электролитов. При моляльности электролита 0,0 до 0,2 моль/кг средний коэффициент активности y ± уменьшается, причем тем сильнее, чем выше заряд ионов, образующих электролит. При изменении концентраций растворов от 0,5 до 1,0 моль/кг и выше средний коэффициент активности достигает минимального значения, возрастает и становится равным и даже большим единицы.

Средний коэффициент активности разбавленного электролита можно оценить при помощи правила ионной силы. Ионная сила I растворасильного электролита или смеси сильных электролитов определяется уравнением:

Или (VII.22)

В частности, для одно-одновалентного электролита, ионная сила равна концентрации (I = m ); для одно-двухвалентного или двух-одновалентного электролита (I = 3 m ); для бинарного электролита с зарядом ионов z I = m z 2 .

Согласно правилу ионной силы в разбавленных растворах средний коэффициент активности электролита зависит только от ионной силы раствора. Это правило справедливо при концентрации раствора менее 0,01 - 0,02 моль/кг, но приближенно им можно пользоваться до концентрации 0,1 - 0,2 моль/кг.

Средний коэффициент активности сильного электролита.

Между активностью a 2 сильного электролита в растворе (если формально не учитывать его диссоциацию на ионы) и средней активностью ионов электролита y ± в соответствии с уравнениями (VII.8), (VII.11) и (VII.14) получаем соотношение

(VII.23)

Рассмотрим несколько способов определения среднего коэффициента активности электролита y ± по равновесным свойствам раствора электролитов.

В настоящем разделе вводятся абсолютная активность, коэффициент активности, средний коэффициент активности и осмотический коэффициент. Два последних коэффициента полезны при табулировании зависимостей термодинамических свойств растворов от их состава, однако их теоретические выражения довольно громоздки.

Абсолютная активность А ионного или нейтрального компонента, широко использовавшаяся Гуггенгеймом , определяется из соотношения

Она обладает тем преимуществом, что обращается в нуль при отсутствии компонента, тогда как химический потенциал обращается в таком случае в минус бесконечность. Кроме того, - безразмерна. Абсолютная активность имеет еще и то преимущество, что с ней можно обращаться как с обычной активностью, и при этом она не зависит от какого-либо вторичного стандартного состояния, которое могло бы быть принято для некоторого раствора или растворителя при определенных температуре и давлении.

Для растворенного компонента величину А, можно дальше расписать следующим образом:

где - моляльность, или число молей растворенного вещества на единицу массы растворителя (выражаемая обычно в грамм-молекулах или грамм-ионах на килограмм растворителя), Y - коэффициент активности компонента постоянный коэффициент пропорциональности, не зависящий от состава и электрического состояния, но определяемый растворенным компонентом и зависящий от температуры и давления. Для конденсированных фаз зависимостью от давления часто пренебрегают.

Можно использовать и другие концентрационные шкалы, однако коэффициент активности и постоянный коэффициент меняются так, что не зависит от используемой концентрационной шкалы. Другой общепринятой концентрационной шкалой является молярность, или число молей на единицу объема раствора (выражается обычно в молях на литр и обозначается М), причем связана с этой шкалой соотношением

где молярность компонента - коэффициент активности, а постоянный коэффициент пропорциональности, аналогичный

Моляльность связана с молярностью согласно уравнению

где - плотность раствора , - молекулярный вес компонента или г/г-ион), причем в сумму не входит растворитель, обозначенный нижним индексом

Популярность моляльности среди экспериментаторов, работающих в физической химии, видимо, объясняется тем, что ее легко получить непосредственно из масс компонентов в растворе, без отдельного определения плотности. Концентрация в молярной шкале более удобна при анализе процессов транспорта в растворах. Кроме того, моляльность особенно неудобна, если в рассматриваемую область концентраций входит расплавленная соль, поскольку моляльность при этом обращается в бесконечность. Можно использовать щкалу мольных долей, но тогда приходится решать, как рассматривать диссоциированный электролит. Массовая доля имеет то преимущество, что она зависит лишь от масс компонентов и к тому же не зависит от шкалы атомных весов, которая, как известно, изменялась даже в последние годы. Однако шкала массовой доли не позволяет просто рассмотреть взаимосвязанные свойства растворов (понижение точки замерзания, повышение точки кипения, понижение давления пара), а также свойства разбавленных растворов электролитов. Единственной из этих шкал, изменяющейся с температурой при нагревании данного раствора, является молярная концентрация.

Вторичные стандартные состояния, необходимые для нахождения или рассчитываются из условия обращения в единицу определенной комбинации коэффициентов активности по мере бесконечного разбавления раствора, т. е.

для всех таких комбинаций в которых значения удовлетворяют уравнению (13-3). В частности, коэффициент активности любого нейтрального недиссоциированного компонента

приближается к единице по мере стремления к нулю концентраций всех растворенных веществ. Если принять, что коэффициенты активности безразмерны, то имеют размерности, обратные размерностям . Учитывая условия (13-5) и (13-6) для определения вторичных стандартных состояний, можно сказать что связаны соотношением

где - плотность чистого растворителя

Для ионного компонента зависит от электрического состояния фазы. Поскольку приняты независимыми от электрического состояния, заключаем, что от этого состояния зависит . Аналогичное утверждение применимо к коэффициенту активности . В противоположность этому Гуггенгейм принимает, что не зависит, а №. зависит от электрического состояния. Это приводит нас к малоприемлемой ситуации, когда у должен зависеть от состава при постоянном электрическом состоянии. Однако для растворов различного состава еще не было дано определения постоянного электрического состояния.

Чтобы дополнительно проиллюстрировать природу этих коэффициентов активности, рассмотрим раствор одного электролита А, диссоциирующего на катионов с зарядовым числом анионов с зарядовым числом - (имеется лишь один электролит, поэтому верхний индекс А у опущен). Тогда стехиометрическая концентрация электролита может быть представлена в виде

Помощью равенства (12-3) можно выразить химический потенциал А следующим образом:

Поскольку А нейтрален, согласно условию (14-5) необходимо, чтобы при Следовательно, такое определение вторичного стандартного состояния приводит к следующей комбинации величин

Этот предельный процесс позволяет отыскать далее произведение

При любом ненулевом значении с помощью уравнения (14-10).

Обобщая эти представления, мы приходим к следующим заключениям:

можно однозначно определить выражение вида

для таких произведений, показатели которых удовлетворяют условию Гуггенгейма

Таким образом, выбор вторичного стандартного состояния в соответствии с условием (14-5) позволяет отдельно определить соответствующие произведения типа

Эти выводы следуют из того факта, что соответствующие произведения электрохимических потенциалов и абсолютных активностей

не зависят от электрического состояния в случае нейтральных комбинаций ионов.

С другой стороны, разности и отношения взятые в разных фазах, определены однозначно, но зависят от электрических состояний фаз. Их абсолютные значения в отдельной фазе не определены, поскольку в первичном стандартном состоянии (например, при 0 °С и 1 атм) не содержится информации об электрическом стандартном состоянии. Соответственно во вторичное стандартное состояние также входят лишь нейтральные комбинации компонентов. Следовательно величины для ионных компонентов определены не единственно возможным способом, причем эту трудность можно было бы преодолеть путем приписания величине произвольного значения для одного ионного компонента в каждом растворителе при каждой температуре. Однако в любых приложениях уравнения можно составить так, чтобы всегда требовались только произведения величин также у, соответствующие нейтральным комбинациям ионов.

Вернемся к раствору одного электролита. По определению, средний коэффициент активности в моляльной шкале задается выражением

Проведенное выше обсуждение показывает, что этот средний коэффициент активности определен однозначно и не зависит от электрического состояния раствора. Если также определить из соотношения

то равенство (14-10) можно записать в форме

Для растворов одного электролита измеряется и табулируется именно средний коэффициент активности

Конечно, термодинамические свойства растворов одного электролита можно изучать неэлектрохимическими средствами и без детального рассмотрения его диссоциации. Например, измеряя давления паров или точки замерзания, можно получить зависимость химического потенциала и от концентрации. В том и состоит достоинство термодинамики, что она позволяет изучать макроскопические характеристики системы, не обращаясь к молекулярным представлениям, если различные компоненты быстро уравновешиваются друг с другом.

Если бы мы применили равенство (14-2) к электролиту А без учета его диссоциации, то получили бы

Это выражение отличается от равенства (14-15) прежде всего отсутствием множителя v. Таким образом, должны отличаться от причем должен иметь концентрационную зависимость, значительно отличающуюся от зависимости Конкретно мы имеем

Следовательно, при и равенство (14-5) неприменимо для определения вторичного стандартного состояния для в равенстве (14-16). Мы приходим к выводу, что при

бесконечном разбавлении существенно знать агрегатное состояние растворенного вещества. Эту информацию необходимо учитывать при выборе компонентов раствора, если мы желаем воспользоваться условием (14-5) для определения вторичного стандартного состояния. За исключением этой необходимости выбора другого вторичного стандартного состояния, со строго термодинамической точки зрения вполне законно рассматривать электролит как недиссоциированный, хотя если это и делается, то редко. Таким образом, под коэффициентом активности мы будем подразумевать средний ионный коэффициент активности электролита.

Аналогичные представления могут быть развиты для молярной шкалы концентрации. В этой шкале средний коэффициент активности электролита определяется из соотношения

Активность и коэффициент активности электролитов. Ионная сила раствора.

Недостатки теории Аррениуса. Теория электролитов Дебая и Гюккеля.

Активность растворенной соли а может быть определена по давлению пара, температуре затвердевания, по данным о растворимости, методом ЭДС. Все методы определения активности соли приводят к величине, характеризующей реальные термодинамические свойства растворенной соли в целом, независимо от того, диссоциирована она или нет. Однако в общем случае свойства различных ионов неодинаковы, и можно ввести и рассматривать термодинамические функции отдельно для ионов разных видов:

m + = m + о + RT ln a + = m + o + RT ln m + + RT ln g + ¢

m - = m - о + RT ln a - = m - o + RT ln m - + RT ln g - ¢

где g + ¢ и g - ¢ - практические коэффициенты активности (коэффициенты активности при концентрациях, равных моляльности m).

Но термодинамические свойства различных ионов не могут быть определены порознь из опытных данных без дополнительных допущений; мы можем измерить только средние термодинамические величины для ионов, на которые распадается молекула этого вещества.

Пусть диссоциация соли происходит по уравнению:

А n + В n - = n + А z + + n - B z -

При полной диссоциации m + = n + m , m - = n - m. Пользуясь уравнениями Гиббса-Дюгема, можно показать:

а + n + ×а - n - ¤ а = const

Стандартные состояния для нахождения величин активностей определяются так:

lim a + ® m + = n + m при m ® 0 , lim a - ® m - = n - m при m ® 0

Стандартное состояние для а выбирается так, чтобы const была равна 1. Тогда:

а + n + ×а - n - = а

Т.к. нет методов экспериментального определения значений а + и а - в отдельности, то вводят среднюю ионную активность а ± , определяемую соотношением:

а ± n = а

Т.о., мы имеем две величины, характеризующие активность растворенной соли . Первая из них - это мольная активность , т.е. активность соли, определяемая независимо от диссоциации; она находится теми же экспериментальными методами и по тем же формулам, что и активность компонентов в неэлектролитах. Вторая величина - средняя ионная активность а ± .

Введем теперь коэффициенты активности ионов g + ¢ и g - ¢ , среднюю ионную моляльность m ± и средний ионный коэффициент активности g ± ¢ :

a + = g + ¢m + , a - = g - ¢m - , m ± = (m + n + ×m - n -) 1/ n = (n + n + ×n - n -) 1/ n m

g ± ¢ = (g¢ + n + ×g¢ - n -) 1/ n

Очевидно: a ± = (g¢ + n + ×g¢ - n -) 1/ n (n + n + ×n - n -) 1/ n m = g ± ¢ m ±

Т.о., основные величины связаны соотношениями:

a ± = g ± ¢ m ± = g ± ¢ (n + n + × n - n - ) 1/ n m = L g ± ¢ m

где L = (n + n + ×n - n -) 1/ n и для солей каждого определенного типа валентности является величиной постоянной.

Величина g ± ¢ является важной характеристикой отклонения раствора соли от идеального состояния. В растворах-электролитах, как и в растворах-неэлектролитах, могут быть использованы следующие активности и коэффициенты активности :

g ± = - рациональный коэффициент активности (практически не применяется);

g ± ¢ = - практический коэффициент активности (средний моляльный);

f ± = - средний мольный коэффициент активности.

Основными методами измерения величины g ± ¢ являются криоскопический и метод ЭДС.

Многочисленные исследования показали, что кривая зависимости g ± ¢ от концентрации раствора (m) имеет минимум. Если изображать зависимость в координатах lg g ± ¢ - , то для разбавленных растворов зависимость оказывается линейной. Наклон прямых, соответствующих предельному разбавлению, одинаков для солей одного валентного типа.

Присутствие в растворе других солей изменяет коэффициент активности данной соли. Суммарное влияние смеси солей в растворе на коэффициент активности каждой из них охватывается общей закономерностью, если суммарную концентрацию всех солей в растворе выразить через ионную силу. Ионной силой I (или ионной крепостью) раствора называется полусумма произведений концентрации каждого иона на квадрат числа его заряда (валентности), взятая для всех ионов данного раствора.

Если использовать моляльность как меру концентрации, то ионная сила раствора определяется выражением:

где i - индексы ионов всех солей в растворе; m i = n i m.

Льюис и Рендалл открыли эмпирический закон ионной силы : средний ионный коэффициент активности g ± ¢ диссоциирующего на ионы вещества является универсальной функцией ионной силы раствора, т.е. в растворе с данной ионной силой все диссоциирующие на ионы вещества имеют коэффициенты активности, не зависящие от природы и концентрации данного вещества, но зависящие от числа и валентности его ионов.

Закон ионной силы отражает суммарное взаимодействие ионов раствора с учетом их валентности. Этот закон точен лишь при очень малых концентрациях (m ≤ 0,02); уже при умеренных концентрациях он верен лишь приблизительно.

В разбавленных растворах сильных электролитов:

lg g ± ¢ = - А

НЕДОСТАТКИ ТЕОРИИ АРРЕНИУСА .

В теории электролитов очень важным является вопрос о распределении ионов в растворе. По первоначальной теории электролитической диссоциации, основанной на физической теории растворов Вант-Гоффа, считалось, что ионы в растворах находятся в состоянии беспорядочного движения - в состоянии, подобном газообразному.

Однако представление о беспорядочном распределении ионов в растворе не соответствует действительности, так как онo не учитывают электростатического взаимодействия между ионами. Электрические силы проявляются на относительно больших расстояниях, и в сильных электролитах, где диссоциация велика, а концентрация ионов значительна и расстояния между ними невелики, электростатическое взаимодействие между ионами настолько сильно, что оно не может не сказываться на характере их распределения. Возникает тенденция к упорядоченному распределению, аналогичному распределению ионов в ионных кристаллах, где каждый ион окружён ионами противоположного знака.

Распределение ионов будет определяться соотношением электростатической энергии и энергии хаотического движения ионов. Эти энергии сравнимы по величине, поэтому реальное распределение ионов в электролите является промежуточным между беспорядочным и упорядоченным. В этом заключается своеобразие электролитов и трудности, возникающие при создании теории электролитов.

Около каждого иона образуется своеобразная ионная атмосфера, в которой преобладают ионы противоположного (по сравнению с центральным ионом) знака. Теория Аррениуса не учитывала этого обстоятельства, и многие выводы этой теории оказались в противоречии с опытом.

В качестве одной из количественных характеристик электролита теория Аррениуса предлагает степень электролитической диссоциации a, определяющую долю ионизированных молекул в данном растворе. В согласии с ее физическим смыслом a не может быть больше 1 или меньше 0; при заданных условиях она должна быть одной и той же, независимо от метода ее измерения (по измерению электропроводности, осмотического давления или ЭДС). Однако на практике значения a, полученные разными методами, совпадают только для разбавленных растворов слабых электролитов; для сильных электролитов расхождение тем больше, чем больше концентрация электролита, причем в области высоких концентраций a становится больше 1. Следовательно, a не может иметь того физического смысла, который ей приписывался теорией Аррениуса.

Второй количественной характеристикой по теории Аррениуса является константа диссоциации; она должна быть постоянной для данного электролита при заданных Т и Р, независимо от концентрации раствора. На практике только для разбавленных растворов очень слабых электролитов К дис остается при разбавлении более или менее постоянной.

Т.о., теория электролитической диссоциации приложима только к разбавленным растворам слабых электролитов .

ТЕОРИЯ ЭЛЕКТРОЛИТОВ ДЕБАЯ И ГЮККЕЛЯ .

Основные положения современной теории растворов электролитов были сформулированы в 1923 г. Дебаем и Гюккелем. Для статистической теории электролитов исходным является следующее положение : ионы распределены в объеме раствора не хаотически, а в соответствии с законом кулоновского взаимодействия. Вокруг каждого отдельного иона существует ионная атмосфера (ионное облако) - сфера, состоящая из ионов противоположного знака. Ионы, входящие в состав сферы, непрерывно обмениваются местами с другими ионами. Все ионы раствора равноценны, каждый из них окружен ионной атмосферой, и в то же время каждый центральный ион входит в состав ионной атмосферы какого-либо другого иона. Существование ионных атмосфер и есть тот характерный признак, который, по Дебаю и Гюккелю, отличает реальные растворы электролитов от идеальных.

С помощью уравнений электростатики можно вывести формулу для электрического потенциала ионной атмосферы , из которой вытекают уравнения для средних коэффициентов активности в электролитах:

D - диэлектрическая проницаемость раствора; е - заряд электрона; z i - заряд иона; r - координата (радиус).

c = - величина, зависящая от концентрации раствора, D и Т, но не зависящая от потенциала; имеет размерность обратной длины; характеризует изменение плотности ионной атмосферы вокруг центрального иона с увеличением расстояния r от этого иона.

Величина 1/c называется характеристической длиной ; ее можно отождествить с радиусом ионной атмосферы. Она имеет большое значение в теории растворов электролитов.

Для коэффициента активности получено следующее выражение:

lg f ± = - A |z + ×z - | (1)

Коэффициент A зависит от Т и D: обратно пропорционален (DT) 3/2 .

Для водных растворов 1-1 зарядных электролитов при 298 К, допуская равенство диэлектрических проницаемостей раствора и растворителя (78,54), можно записать:

lg f ± = - A = - A = - 0,51

Т.о., теория Дебая и Гюккеля позволяет получить такое же уравнение для коэффициента активности, какое было эмпирически найдено для разбавленных растворов электролитов. Теория, следовательно, находится в качественном согласии с опытом. При разработке этой теории были сделаны следующие допущения :

1. Число ионов в электролите можно определить из аналитической концентрации электролита, т.к. он считается полностью диссоциированным (a = 1). Теорию Дебая и Гюккеля поэтому иногда называют теорией полной диссоциации. Однако ее можно применить и в тех случаях, когда a ¹ 1.

2. Распределение ионов вокруг любого центрального иона подчиняется классической статистике Максвелла-Больцмана.

3. Собственными размерами ионов можно пренебречь по сравнению с расстояниями между ними и с общим объемом раствора. Т.о., ионы отождествляются с материальными точками, и все их свойства сводятся лишь к величине заряда. Это допущение справедливо только для разбавленных растворов.

4. Взаимодействие между ионами исчерпывается кулоновскими силами. Наложение сил теплового движения приводит к такому распределению ионов в растворе, для которого характерна статистическая шаровая ионная атмосфера. Это допущение справедливо лишь для разбавленных растворов. При повышении концентрации среднее расстояние между ионами уменьшается, и наряду с электростатическими силами появляются другие силы, действующие на более близком расстоянии, в первую очередь силы Ван-дер-Ваальса. Возникает необходимость учета взаимодействия не только между данным ионом и его окружением, но и между любыми двумя соседними ионами.

5. При расчетах принимается, что диэлектрические проницаемости раствора и чистого растворителя равны; это справедливо только в случае разбавленных растворов.

Т.о., все допущения Дебая и Гюккеля приводят к тому, что их теория может быть применима только к разбавленным растворам электролитов с ионами низкой валентности . Уравнение (1) соответствует этому предельному случаю и выражает так называемый предельный закон Дебая и Гюккеля или первое приближение теории Дебая и Гюккеля .

Предельный закон Дебая-Гюккеля дает верные значения коэффициентов активности 1-1 зарядного электролита, особенно в очень разбавленных растворах. Сходимость теории с опытом ухудшается по мере увеличения концентрации электролита, увеличения зарядов ионов и уменьшения диэлектрической проницаемости растворителя, т.е. с ростом сил взаимодействия между ионами.

Первая попытка усовершенствовать теорию Дебая и Гюккеля и расширить область ее применения была сделана самими авторами. Во втором приближении они отказались от представления об ионах как о материальных точках (допущение 3) и попытались учесть конечные размеры ионов, наделив каждый электролит некоторым средним диаметром а (при этом изменяется и допущение 4). Приписав ионам определенные размеры, Дебай и Гюккель учли тем самым силы некулоновского происхождения, препятствующие сближению ионов на расстояние, меньшее некоторой величины.

Во втором приближении средний коэффициент активности описывается уравнением:

lg f ± = - (2)

где А сохраняет прежнее значение; а условно названо средним эффективным диаметром ионов , имеет размерность длины, фактически - эмпирическая постоянная; В = c/, В слегка изменяется с Т. Для водных растворов произведение Ва близко к 1.

Сохранив основные положения второго приближения теории, Гюккель учел уменьшение диэлектрической проницаемости с ростом концентрации растворов. Ее уменьшение вызывается ориентацией диполей растворителя вокруг иона, в результате чего снижается их реакция на эффект внешнего поля. Уравнение Гюккеля выглядит следующим образом:

lg f ± = - + CI (3)

где С - эмпирическая константа. При удачном подборе значений В и С формула Гюккеля хорошо согласуется с опытом и широко используется при расчетах. При последовательном уменьшении ионной силы уравнение (3) последовательно переходит в формулу второго приближения теории Дебая и Гюккеля (уравнение (2)), а затем в предельный закон Дебая-Гюккеля (уравнение (1)).

В процессе развития теории Дебая-Гюккеля и последовательного отказа от принятых допущений улучшается сходимость с опытом и расширяется область ее применимости, однако это достигается ценой превращения теоретических уравнений в полуэмпирические.

Общая концентрация ионов в растворе - молярная концентрация растворенного электролита с учетом его степени диссоциации на ионы и числа ионов, на которые диссоциирует молекула электроплита в растворе.

Для сильных электролитов α = 1, поэтому общая концентрация ионов определяется молярной концентрацией электролита и числом ионов, на которые распадается молекула сильного электролита в растворе.

Так, в случае диссоциации сильного электролита - хлорида натрия в водном растворе

NaCl → Na + + Cl -

при исходной концентрации электролита с (NaCl) = 0,1 моль/л концентрации ионов оказываются равными той же величине: с(Na +) = 0,1 моль/л и с(Cl -) = 0,1 моль/л.

Для сильного электролита более сложного состава, например, сульфата алюминия Al 2 (SO 4) 3 , концентрации катиона и аниона также рассчитываются легко, учитывая стехиометрию процесса диссоциации:

Al 2 (SO 4) 3 → 2 Al 3+ + 3 SO 4 2-

Если исходная концентрация сульфата алюминия с исх = 0,1 моль/л, то с(А1 3+) = 2 · 0,1 = 0,2 моль/л и с(SO 4 2-) = 3 · 0,1 = =0,3 моль/л.

Активность а связана с общей концентрацией с формальным соотношением

где f˗ коэффициент активности.

При с → 0 величина а → с , так что f →1, т. е. для предельно разбаленных растворов активность по числовой величине совпадает с концентрацией, а коэффициент активности равен единице.

Льюисом и Рэндаллом были введены некоторые математические поправки в соотношения, предложенные Аррениусом.

Г. Льюис и М. Рендалл предложили метод использования активностей вместо концентраций, что позволило формально учесть все многообразие взаимодействий в растворах без учета их физической природы.

В растворах электролитов одновременно присутствуют и катионы, и анионы растворенного вещества. Вводить в раствор ионы только одного сорта физически невозможно. Даже если бы такой процесс и был выполним, то он вызвал бы значительный рост энергии раствора за счет введенного электрического заряда.

Связь активностей отдельных ионов с активностью электролита в целом устанавливается, исходя из условия электронейтральности. Для этого вводятся понятия средней ионной активности и среднего ионного коэффициента активности.

Если молекула электролита диссоциирует на n + катионов и n - анионов, то средняя ионная активность электролита a ± равна:

,

где и - активность катионов и анионов соответственно, n- общее число ионов (n=n + + n -).

Аналогично записывается средний ионный коэффициент активности электролита :, характеризующий отклонения реального раствора от идеального

.

Активность можно представить как произведение концентрации на коэффициент активности. Существуют три шкалы выражения активностей и концентраций: моляльность (моляльная, или практическая шкала), молярностьс (молярная шкала) и мольная доля х (рациональная шкала).

В термодинамике растворов электролитов обычно используется моляльная шкала концентраций.

Активность и коэффициент активности электролита. Ионная сила раствора. Правило ионной силы.

Активность растворенной солиа может быть определена по давлению пара, температуре затвердевания, по данным о растворимости, методом ЭДС. Все методы определения активности соли приводят к величине, характеризующей реальные термодинамические свойства растворенной соли в целом, независимо от того, диссоциирована она или нет. Однако в общем случае свойства различных ионов неодинаковы, и можно ввести и рассматривать термодинамические функции отдельно для ионов разных видов:

m + = m + о + RT ln a + = m + o + RT ln m + + RT ln g + ¢

m – = m – о + RT ln a – = m – o + RT ln m – + RT ln g ¢ ,

где g + ¢ и g ¢ - практические коэффициенты активности (коэффициенты активности при концентрациях, равных моляльности m ).

Но термодинамические свойства различных ионов не могут быть определены порознь из опытных данных без дополнительных допущений; мы можем измерить только средние термодинамические величины для ионов, на которые распадается молекула этого вещества.

Пусть диссоциация соли происходит по уравнению

А n + В n - = n + А z + + n - B z - .

При полной диссоциации m + = n + m , m - = n - m . Пользуясь уравнениями Гиббса – Дюгема, можно показать, что

а + n + × а - n - ¤ а =const .

Стандартные состояния для нахождения величин активностей определяются так:

lim a + ® m + = n + m приm ® 0 ,

lim a ® m – = n m приm ® 0 .

Стандартное состояние дляа выбирается так, чтобы const была равна 1. Тогда

а + n + × а - n - =а .

Так как нет методов экспериментального определения значенийа + иа в отдельности, то вводят среднюю ионную активностьа ± , определяемую соотношением

а ± n =а .

Таким образом, мы имеем две величины, характеризующие активность растворенной соли . Первая из них - этомольнаяактивность , тоесть активность соли, определяемая независимо от диссоциации; она находится теми же экспериментальными методами и по тем же формулам, что и активность компонентов в неэлектролитах. Вторая величина - средняяионнаяактивность а ± .

Введем теперькоэффициентыактивностиионов g + ¢ и g ¢ , среднююионнуюмоляльность m ± исреднийионныйкоэффициентактивности g ± ¢ :

a + = g + ¢ m + ,a – = g ¢ m – ,a ± = g ± ¢ m ± ,

где g ± ¢ =(g ¢ + n + × g ¢ - n - ) 1/ n ,m ± =(m + n + × m - n - ) 1/ n =(n + n + × n - n - ) 1/ n m .

Итак, основные величины связаны соотношениями

a ± = g ± ¢ m ± = g ± ¢ ( n + n + × n - n - ) 1/ n m = L g ± ¢ m ,

где L =(n + n + × n - n - ) 1/ n и для солей каждого определенного типа валентности является величиной постоянной.

Величина g ± ¢ является важной характеристикой отклонения раствора соли от идеального состояния. В растворах-электролитах, как и в растворах-неэлектролитах, могут быть использованы следующие активности и коэффициенты активности :

g ± = - рациональный коэффициент активности (практически не применяется);

g ± ¢ = - практический коэффициент активности (средний моляльный);

f ± =± (g ± ¢ )от концентрации раствора (с илиm ) имеет минимум. Если изображать зависимость в координатахlg g ± ¢

Рис. 24. Зависимость коэффициента активности электролита от его концентрации для солей различного валентного типа

Присутствие в растворе других солей изменяет коэффициент активности данной соли. Суммарное влияние смеси солей в растворе на коэффициент активности каждой из них охватывается общей закономерностью, если суммарную концентрацию всех солей в растворе выразить через ионную силу. Ионнойсилой I (или ионной крепостью) раствора называется полусумма произведений концентрации каждого иона на квадрат числа его заряда (валентности), взятая для всех ионов данного раствора.

- индексы ионов всех солей в растворе;m i = n i m .

Льюис и Рендалл открыли эмпирический закон ионной силы : средний ионный коэффициент активности g ± ¢ диссоциирующего на ионы вещества является универсальной функцией ионной силы раствора, то есть в растворе с данной ионной силой все диссоциирующие на ионы вещества имеют коэффициенты активности, не зависящие от природы и концентрации данного вещества, но зависящие от числа и валентности его ионов.

Закон ионной силы отражает суммарное взаимодействие ионов раствора с учетом их валентности. Этот закон точен лишь при очень малых концентрациях (m 0,01); уже при умеренных концентрациях он верен лишь приблизительно. В соответствии с этим законом, в разбавленных растворах сильных электролитов

lg g ± ¢ = - А .

Степень окисления