Сложные эфиры химические свойства и получение. Сложные эфиры: химические свойства и применение

Сложными эфирами принято называть соединения, полученные по реакции этерификации из карбоновых кислот. При этом происходит замещение ОН- из карбоксильной группы на алкоксирадикал. В результате образуются сложные эфиры, формула которых в общем виде записывается как R-СОО-R".

Строение сложноэфирной группы

Полярность химических связей в молекулах сложных эфиров аналогична полярности связей в карбоновых кислотах. Главным отличием является отсутствие подвижного атома водорода, на месте которого размещается углеводородный остаток. Вместе с тем электрофильный центр располагается на атоме углерода сложноэфирной группы. Но и углеродный атом алкильной группы, соединенный с ней, тоже положительно поляризован.

Электрофильность, а значит, и химические свойства сложных эфиров определяются строением углеводородного остатка, занявшего место атома Н в карбоксильной группе. Если углеводородный радикал образует с атомом кислорода сопряженную систему, то реакционная способность заметно возрастает. Так происходит, например, в акриловых и виниловых эфирах.

Физические свойства

Большинство сложных эфиров представляют собой жидкости или кристаллические вещества с приятным ароматом. Температура их кипения обычно ниже, чем у близких по значениям молекулярных масс карбоновых кислот. Что подтверждает уменьшение межмолекулярных взаимодействий, а это, в свою очередь, объясняется отсутствием водородных связей между соседними молекулами.

Однако так же, как и химические свойства сложных эфиров, физические зависят от особенностей строения молекулы. А точнее, от типа спирта и карбоновой кислоты, из которых он образован. По этому признаку сложные эфиры делят на три основные группы:

  1. Фруктовые эфиры. Они образованы из низших карбоновых кислот и таких же одноатомных спиртов. Жидкости с характерными приятными цветочно-фруктовыми запахами.
  2. Воски. Являются производными высших (число атомов углерода от 15 до 30) кислот и спиртов, имеющих по одной функциональной группе. Это пластичные вещества, которые легко размягчаются в руках. Основным компонентом пчелиного воска является мирицилпальмитат С 15 Н 31 СООС 31 Н 63 , а китайский - цериловый эфир церотиновой кислоты С 25 Н 51 СООС 26 Н 53 . Они не растворяются в воде, но растворимы в хлороформе и бензоле.
  3. Жиры. Образованные из глицерина и средних и высших карбоновых кислот. Животные жиры, как правило, твердые при нормальных условиях, но легко плавятся при повышении температуры (сливочное масло, свиной жир и др.). Для растительных жиров характерно жидкое состояние (льняное, оливковое, соевое масла). Принципиальным отличием в строении этих двух групп, что и сказывается на различиях в физических и химических свойствах сложных эфиров, является наличие или отсутствие кратных связей в кислотном остатке. Животные жиры являются глицеридами непредельных карбоновых кислот, а растительные - предельных кислот.

Химические свойства

Эфиры реагируют с нуклеофилами, что приводит к замещению алкоксигруппы и ацилированию (или алкилированию) нуклеофильного агента. Если в структурной формуле сложного эфира имеется α-водородный атом, то возможна сложноэфирная конденсация.

1. Гидролиз. Возможен кислотный и щелочной гидролиз, представляющий собой реакцию, обратную этерификации. В первом случае гидролиз обратим, а кислота выступает в роли катализатора:

R-СОО-R" + Н 2 О <―> R-СОО-Н + R"-OH

Основной гидролиз необратим и обычно называется омылением, а натриевые и калиевые соли жирных карбоновых кислот - мылами:

R-СОО-R" + NaOH ―> R-СОО-Na + R"-OΗ

2. Аммонолиз. Нуклеофильным агентом может выступать аммиак:

R-СОО-R" + NH 3 ―> R-СО-NH 2 + R"-OH

3. Переэтерификация. Это химическое свойство сложных эфиров можно причислить также к способам их получения. Под действием спиртов в присутствии Н + или ОН - возможна замена углеводородного радикала, соединенного с кислородом:

R-СОО-R" + R""-OH ―> R-СОО-R"" + R"-OH

4. Восстановление водородом приводит к образованию молекул двух разных спиртов:

R-СО-OR" + LiAlH 4 ―> R-СΗ 2 -ОΗ + R"OH

5. Горение - еще одна типичная для сложных эфиров реакция:

2CΗ 3 -COO-CΗ 3 + 7O 2 = 6CO 2 + 6H 2 O

6. Гидрирование. Если в углеводородной цепи молекулы эфира имеются кратные связи, то по ним возможно присоединение молекул водорода, которое происходит в присутствии платины или других катализаторов. Так, например, из масел возможно получение твердых гидрогенизированных жиров (маргарина).

Применение сложных эфиров

Сложные эфиры и их производные применяются в различных отраслях промышленности. Многие из них хорошо растворяют различные органические соединения, используются в парфюмерии и пищевой промышленности, для получения полимеров и полиэфирных волокон.

Этилацетат. Используется как растворитель для нитроцеллюлозы, ацетилцеллюлозы и других полимеров, для изготовления и растворения лаков. Благодаря приятному аромату применяется в пищевой и парфюмерной промышленностях.

Бутилацетат. Также применяют в качестве растворителя, но уже и полиэфирных смол.

Винилацетат (СН 3 -СОО-СН=СН 2). Используется как основа полимера, необходимого в приготовлении клея, лаков, синтетических волокон и пленок.

Малоновый эфир. Благодаря своим особым химическим свойствам этот сложный эфир широко используется в химическом синтезе для получения карбоновых кислот, гетероциклических соединений, аминокарбоновых кислот.

Фталаты. Эфиры фталевой кислоты используют в качестве пластифицирующих добавок к полимерам и синтетическим каучукам, а диоктилфталат - еще и как репеллент.

Метилакрилат и метилметакрилат. Легко полимеризуются с образованием устойчивого к различным воздействиям листов органического стекла.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство здравоохранения Свердловской области

Фармацевтический филиал ГБОУ СПО "СОМК"

Кафедра химии и фармтехнологии

Сложные эфиры в быту

Петрухина Марина Александровна

Руководитель:

Главатских Татьяна Владимировна

Екатеринбург

Введение

2. Физические свойства

5. Сложные эфиры в парфюмерии

9. Получение мыла

Заключение

Введение

Сломжные эфимры -- производные оксокислот (как карбоновых, так и минеральных, у которых атом водорода в ОН-группе замещен органической группой R (алифатической, алкенильной, ароматической или гетероароматической); рассматриваются также как ацилпроизводные спиртов.

Среди изученных и широко применяемых сложных эфиров большинство представляют соединения, полученные на основе карбоновых кислот. Сложные эфиры на основе минеральных (неорганических) кислот не столь разнообразны, т.к. класс минеральных кислот менее многочисленен, чем карбоновых (многообразие соединений - один из отличительных признаков органической химии).

Цели и задачи

1. Выяснить, насколько широко используются сложные эфиры в быту. Сферы применения сложных эфиров в жизни человека.

2. Описать различные методы получения сложных эфиров.

3. Выяснить насколько безопасно использование сложных эфиров в быту.

Предмет исследования

Сложные эфиры. Методы их получения. Применение сложных эфиров.

1. Основные методы получения сложных эфиров

Этерификация -- взаимодействие кислот и спиртов в условиях кислотного катализа, например получение этилацетата из уксусной кислоты и этилового спирта:

Реакции этерификации обратимы, сдвиг равновесия в сторону образования целевых продуктов достигается удалением одного из продуктов из реакционной смеси (чаще всего -- отгонкой более летучих спирта, эфира, кислоты или воды).

Взаимодействие ангидридов или галогенангидридов карбоновых кислот со спиртами

Пример: получение этилацетата из уксусного ангидрида и этилового спирта:

(CH3CO)2O + 2 C2H5OH = 2 CН3COOC2H5 + H2O

Взаимодействие солей кислот с галогеналканами

RCOOMe + R"Hal = RCOOR" + MeHal

Присоединение карбоновых кислот к алкенам в условиях кислотного катализа:

RCOOH + R"CH=CHR"" = RCOOCHR"CH2R""

Алкоголиз нитрилов в присутствии кислот:

RC+=NH + R"OH RC(OR")=N+H2

RC(OR")=N+H2 + H2O RCOOR" + +NH4

2. Физические свойства

Если число атомов углерода в исходных карбоновой кислоте и спирте не превышает 6-8, то соответствующие сложные эфиры представляют собой бесцветные маслянистые жидкости, чаще всего с фруктовым запахом. Они составляют группу фруктовых эфиров.

Если в образовании сложного эфира участвует ароматический спирт (содержащий ароматическое ядро), то такие соединения обладают, как правило, не фруктовым, а цветочным запахом. Все соединения этой группы практически нерастворимы в воде, но легко растворимы в большинстве органических растворителей. Интересны эти соединения широким спектром приятных ароматов, некоторые из них вначале были выделены из растений, а позже синтезированы искусственно.

При увеличении размеров органических групп, входящих в состав сложных эфиров, до С15-30 соединения приобретают консистенцию пластичных, легко размягчающихся веществ. Эту группу называют восками, они, как правило, не обладают запахом. Пчелиный воск содержит смесь различных сложных эфиров, один из компонентов воска, который удалось выделить и определить его состав, представляет собой мирициловый эфир пальмитиновой кислоты С15Н31СООС31Н63. Китайский воск (продукт выделения кошенили - насекомых Восточной Азии) содержит цериловый эфир церотиновой кислоты С25Н51СООС26Н53. Воски не смачиваются водой, растворимы в бензине, хлороформе, бензоле.

3. Некоторые сведения об отдельных представителях класса сложные эфиры

Эфиры муравьиной кислоты

HCOOCH3 -- метилформиат, tкип = 32°C; растворитель жиров, минеральных и растительных масел, целлюлозы, жирных кислот; ацилирующий агент; используют в производстве некоторых уретанов, формамида.

HCOOC2H5 -- этилформиат, tкип = 53°C; растворитель нитрата и ацетата целлюлозы; ацилирующий агент; отдушка для мыла, его добавляют к некоторым сортам рома, чтобы придать ему характерный аромат; применяют в производстве витаминов B1, A, E.

HCOOCH2CH(CH3)2 -- изобутилформиат; несколько напоминает запах ягод малин ы.

HCOOCH2CH2CH(CH3)2 -- изоамилформиат (изопентилформиат) растворитель смол и нитроцеллюлозы.

HCOOCH2C6H5 -- бензилформиат, tкип = 202°C; имеет запах жасмина; используется как растворитель лаков и красителей.

HCOOCH2CH2C6H5 -- 2-фенилэтилформиат; имеет запах хризантем.

Эфиры уксусной кислоты

CH3COOCH3 -- метилацетат, tкип = 58°C; по растворяющей способности аналогичен ацетону и применяется в ряде случаев как его заменитель, однако он обладает большей токсичностью, чем ацетон.

CH3COOC2H5 -- этилацетат, tкип = 78°C; подобно ацетону растворяет большинство полимеров. По сравнению с ацетоном его преимущество в более высокой температуре кипения (меньшей летучести).

CH3COOC3H7 -- н-пропилацетат, tкип = 102 °C; по растворяющей способности подобен этилацетату.

CH3COOC5H11 -- н-амилацетат (н-пентилацетат), tкип = 148°C; напоминает по запаху грушу, применяется как растворитель для лаков, поскольку он испаряется медленнее, чем этилацетат.

CH3COOCH2CH2CH(CH3)2 -- изоамилацетат (изопентилацетат), используется как компонент грушевой и банановой эссенции.

CH3COOC8H17 -- н-октилацетат имеет запах апельсинов.

Эфиры масляной кислоты

C3H7COOC2H5 -- этилбутират, tкип = 121,5°C; имеет характерный запах ананасов.

C3H7COOC5H11 -- н-амилбутират (н-пентилбутират) и C3H7COOCH2CH2CH(CH3)2 -- изоамилбутират (изопентилбутират) имеют запах груш.

Эфиры изовалериановой кислоты

(CH3)2CHCH2COOCH2CH2CH(CH3)2 -- изоамилизовалерат (изопентилизовалерат) имеет запах яблока.

4. Техническое применение сложных эфиров

Сложные эфиры имеют большое техническое применение. Благодаря приятному запаху и безвредности они издавна используются в кондитерском деле, парфюмерии, широко применимы как пластификаторы, растворители.

Так, этил-, бутил - и амилацетаты растворяют целлулоид (нитроцеллюлозные клеи); дибутилоксалат является пластификатором нитроцеллюлозы.

Ацетаты глицерина служат желатинизаторами ацетилцеллюлозы и фиксаторами духов. Аналогичное применение находят эфиры адипиновой и метиладипиновой кислот.

Высокомолекулярные сложные эфиры, например метилолеат, бутилпальмитат, изобутиллаурат и др., применяются в текстильной промышленности для обработки бумажных, шерстяных и шелковых тканей, терпинилацетат и метиловый эфир коричной кислоты - как инсектициды.

5. Сложные эфиры в парфюмерии

В парфюмерно-косметическом производстве используют следующие сложные эфиры:

Линалилацетат -- бесцветная прозрачная жидкость с запахом, напоминающим запах бергамотного масла. Он находится в масле мускатного шалфея, лаванды, бергамотном и др. Его применяют при изготовлении композиций для парфюмерии и отдушек для косметических средств и мыла. Исходным сырьем для выработки линалилацетата служит любое эфирное масло, содержащее линалоол (кориандровое и другие масла). Получают линалилацетат ацетилированием линалоола уксусным ангидридом. Линалилацетат очищают от примесей двойной перегонкой под вакуумом.

Терпинилацетат вырабатывают взаимодействием терпинеола с уксусным ангидридом в присутствии серной кислоты, Из него приготовляют парфюмерные композиции и отдушки для мыла с запахом цветочного направления.

Бензилацетат в разбавленном виде обладает запахом, напоминающим запах жасмина. Он найден в некоторых эфирных маслах и является главной составной частью масел, извлекаемых из цветов жасмина, гиацинта, гардении. В производстве синтетических душистых веществ бензилацетат вырабатывают взаимодействием бензилового спирта или хлористого бензила с производными уксусной кислоты. Из него готовят парфюмерные композиции и отдушки для мыла.

Метилсалицилат входит в состав кассиевого, иланг-илангового и других эфирных масел. В промышленности его применяют для изготовления композиций и отдушек для мыла как продукт, обладающий интенсивным запахом, напоминающим запах иланг-иланга. Его получают взаимодействием салициловой кислоты и метилового спирта в присутствии серной кислоты.

6. Использование сложных эфиров в пищевой промышленности

Применение: Е-491 используют в качестве эмульгатора при производстве сдобных изделий, напитков, соусов в количестве до 5 г/кг. При производстве мороженого и жидких концентратов чая - до 0.5 г/л. В Российской Федерации сорбитан моностеарат применяют также в качестве стабилизатора консистенции, загустителя, текстуратора, связующего агента в жидких концентратах чая, фруктовых и травяных отварах в количестве до 500 мг/кг.

При изготовлении заменителей молока и сливок, кондитерских изделий, жевательной резинки, глазури и начинок - рекомендуемая норма до 5 г/кг. Сорбитан моностеарат добавляют также в биологически-активные добавки. В непищевой промышленности Е491 добавляют при изготовлении лекарственных средств, косметических продуктов (кремов, лосьонов, дезодорантов), для производства эмульсий для обработки растений.

Сорбитан моностеарат (Sorbitan Monostearate)

Пищевая добавка E-491 группы стабилизаторов. Может применяться как эмульгатор (например в составе быстрорастворимых дрожжей).

сложный эфир фармацевтический мыло

Характеристика: Е491 получают синтетически путем прямой этерификации сорбита стеариновой кислотой с одновременным образованием ангидридов сорбита.

Применение: Е-491 используют в качестве эмульгатора при производстве сдобных изделий, напитков, соусов в количестве до 5 г/кг. При производстве мороженого и жидких концентратов чая - до 0.5 г/л. В Российской Федерации сорбитан моностеарат применяют также в качестве стабилизатора консистенции, загустителя, текстуратора, связующего агента в жидких концентратах чая, фруктовых и травяных отварах в количестве до 500 мг/кг. При изготовлении заменителей молока и сливок, кондитерских изделий, жевательной резинки, глазури и начинок - рекомендуемая норма до 5 г/кг. Сорбитан моностеарат добавляют также в биологически-активные добавки. В непищевой промышленности Е491 добавляют при изготовлении лекарственных средств, косметических продуктов (кремов, лосьонов, дезодорантов), для производства эмульсий для обработки растений.

Влияние на организм человека: допустимая суточная норма - 25 мг/кг массы тела. Е491 считается малоопасным веществом, не вызывает опасности при попадании на кожу или слизистую оболочку желудка, оказывает на них слабое раздражающее действие. Чрезмерное употребление Е491 может привести к фиброзу, задержке роста и увеличению печени.

Лецитин (Е-322).

Характеристика: антиокислитель. В промышленном производстве лецитин получают из производственных отходов соевого масла.

Применение: как эмульгатор пищевая добавка Е-322 применяется при производстве молочных продуктов, маргарина, хлебобулочных и шоколадных изделий, а также глазурей. В непищевой промышленности лецитин применяют при производстве жировых красок, растворителей, виниловых покрытий, косметики, а также в процессе производства удобрений, пестицидов и обработки бумаги.

Лецитин есть в составе продуктов, которые имеют большое количество жиров. Это яйца, печень, арахис, некоторый виды овощей и фруктов. Также огромное количество лецитина содержится во всех клетках человеческого организма.

Влияние на организм человека: лецитин - это необходимое вещество для человеческого организма. Однако, не смотря на то, что лецитин является очень полезным для человека, употребление его в больших количествах может привести к нежелательным последствиям - возникновению аллергических реакций.

Эфиры глицерина и смоляных кислот (Е445)

Относятся к группе стабилизаторов и эмульгаторов, предназначенных для сохранения вязкости и консистенции пищевых продуктов.

Применение: эфиры глицерина разрешены к использованию на территории Российской Федерации и широко применяется в пищевой промышленности при производстве:

Мармелада, варенья, желе,

Наполнителей фруктовых, конфет, жевательных резинок,

Продуктов с низкой калорийностью,

Малокалорийных масел,

Сгущённых сливок и молочных продуктов,

Мороженного,

Сыров и сырных продуктов, пудингов,

Желированных мясных и рыбных изделий, и другие продукты.

Влияние на организм человека: многочисленные исследования доказали что употребление добавки Е-445 способно привести к снижению холестерина в крови и веса. Эфиры смоляных кислот могут являться аллергенами и вызвать раздражение кожных покровов. Применяемая добавка Е445 в качестве эмульгатора может приводить к раздражению слизистых оболочек организма и к расстройству работы желудка. В производстве детского питания эфиры глицерина не используются.

7. Сложные эфиры в фармацевтической промышленности

Сложные эфиры являются компонентами косметических кремов и лекарственных мазей, а также эфирных масел.

Нитроглицерин (Nitroglycerinum)

Сердечно-сосудистое лекарственное средство Нитроглицерин представляет собой сложный эфир азотной кислоты и трехатомного спирта глицерина, поэтому его можно назвать тринитратом глицерина.

Получают нитроглицерин добавлением к рассчитанному количеству глицерина смеси азотной и серной кислот.

Образующийся при этом нитроглицерин собирается в виде масла над кислотным слоем. Его отделяют, несколько раз промывают водой, разбавленным раствором соды (для нейтрализации кислоты) и затем снова водой. После этого его сушат безводным сульфатом натрия.

Схематично реакцию образования нитроглицерина можно представить следующим образом:

Нитроглицерин применяется в медицине как спазмолитическое (коронарорасширяющее) средство при стенокардии. Препарат выпускается в склянках по 5-10 мл 1% спиртового раствора и в таблетках, которые содержат 0,5 мг чистого нитроглицерина в каждой таблетке. Хранить склянки с раствором нитроглицерина следует в защищенном от света прохладном месте, вдали от огня. Список Б.

Ацетилсалициловая кислота (Аспирин, Acidum acetylsalicylicum)

Белое кристаллическое вещество, малорастворимое в воде, хорошо растворимо в спирте, в растворах щелочей. Это вещество получают взаимодействием салициловой кислоты с уксусным ангидридом:

Ацетилсалициловая кислота уже более 100 лет широко применяется как лекарственное средство - жаропонижающее, обезболивающее и противовоспалительное.

Фенилсалицилат (салол, Phenylii salicylas)

Также известен как фениловый эфир салициловой кислоты (рис. 5).

Рис. 6 Схема получения фенилсалицилата.

Салол - антисептическое средство, расщепляясь в щелочном содержимом кишечника, высвобождает салициловую кислоту и фенол. Салициловая кислота оказывает жаропонижающее и противовоспалительное действие, фенол активен в отношении патогенной микрофлоры кишечника. Оказывает некоторое уроантисептическое действие. По сравнению с современными противомикробными ЛС фенилсалицилат менее активен, но малотоксичен, не раздражает слизистую оболочку желудка, не вызывает дисбактериоза и других осложнений противомикробной терапии.

Димедрол (Дифенгидрамин, Dimedrolum)

Другое название: 2-диметиламиноэтилового эфира бензгидрола гидрохлорид). Димедрол получают взаимодействием бензгидрола и гидрохлорида диметиламиноэтилхлорида в присутствии щелочи. Полученное основание переводят действием хлороводородной кислоты в гидрохлорид.

Оказывает антигистаминное, противоаллергическое, противорвотное, снотворное, местноанестезирующее действие.

Витамины

Витамин А пальмитат (Ретинил пальмитат) (Retinyl palmitate) - сложный эфир ретинола и пальмитиновой кислоты. Является регулятором процессов кератинизации. В результате применения средств его содержащих, повышается плотность кожи и ее эластичность.

Витамин В15 (пангамовая кислота) - эфир глюконовой кислоты и диметилглицина. Участвует в биосинтезе холина, метионина и креатина как источника метильных групп. при нарушениях кровообращения.

Витамин Е (токоферола ацетат) - является природным антиоксидантом, предотвращает хрупкость сосудов. Незаменимый жирорастворимый компонент для организма человека, поступает, в основном, в составе растительных масел. Нормализует репродуктивную функцию; препятствует развитию атеросклероза, дегенеративно-дистрофических изменений в сердечной мышце и скелетной мускулатуре.

Жиры представляют собой смеси сложных эфиров, образованных трехатомным спиртом глицерином и высшими жирными кислотами. Общая формула жиров:

Общее название таких соединений: триглицериды или триацилглицерины, где ацил - это остаток карбоновой кислоты -C(O)R. Карбоновые кислоты, входящие в состав жиров, как правило, имеют углеводородную цепь с 9-19 атомами углерода.

Животные жиры (коровье масло, баранье, свиное сало) - пластичные легкоплавкие вещества. Растительные жиры (оливковое, хлопковое, подсолнечное масло) - вязкие жидкости. Животные жиры, в основном, состоят из смеси глицеридов стеариновой и пальмитиновой кислоты (рис. 9А, 9Б).

Растительные масла содержат глицериды кислот с несколько меньшей длиной углеродной цепи: лауриновой С11Н23СООН и миристиновой С13Н27СООН. (как и стеариновая и пальмитиновая - это насыщенные кислоты). Такие масла могут долго храниться на воздухе, не меняя своей консистенции, и потому называются невысыхающими. В отличие от них, льняное масло содержит глицерид ненасыщенной линолевой кислоты (рис. 9В).

При нанесении тонким слоем на поверхность такое масло под действием кислорода воздуха высыхает в ходе полимеризации по двойным связям, при этом образуется эластичная пленка, не растворимая в воде и органических растворителях. На основе льняного масла изготавливают натуральную олифу. Животные и растительные жиры также используются в производстве смазочных материалов.

Рис. 9 (А, Б, В)

9. Получение мыла

Жирам как сложным эфирам свойственна обратимая реакция гидролиза, катализируемая минеральными кислотами. При участии щелочей (или карбонатов щелочных металлов) гидролиз жиров происходит необратимо. Продуктами в этом случае являются мыла - соли высших карбоновых кислот и щелочных металлов.

Натриевые соли - твердые мыла, калиевые - жидкие. Реакция щелочного гидролиза жиров, и вообще всех сложных эфиров, называется также омылением.

Омыление жиров может протекать и в присутствии серной кислоты (кислотное омыление). При этом получаются глицерин и высшие карбоновые кислоты. Последние действием щелочи или соды переводят в мыла.

Исходным сырьем для получения мыла служат растительные масла (подсолнечное, хлопковое и др.), животные жиры, а также гидроксид натрия или кальцинированная сода. Растительные масла предварительно подвергаются гидрогенизации, т.е. их превращают в твердые жиры. Применяются также заменители жиров - синтетические карбоновые жирные кислоты с большой молекулярной массой.

Производство мыла требует больших количеств сырья, поэтому поставлена задача получения мыла из непищевых продуктов. Необходимые для производства мыла карбоновые кислоты получают окислением парафина. Нейтрализацией кислот, содержащих от 10 до 16 углеродных атомов в молекуле, получают туалетное мыло, а из кислот, содержащих от 17 до 21 атома углерода, - хозяйственное мыло и мыло для технических целей. Как синтетическое мыло, так и мыло, получаемое из жиров, плохо моет в жесткой воде. Поэтому наряду с мылом из синтетических кислот производят моющие средства из других видов сырья, например из алкилсульфатов - солей сложных эфиров высших спиртов и серной кислоты.

10. Жиры в кулинарии и фармацевтике

Саломас - твердый жир, продукт гидрогенизации подсолнечного, арахисового, кокосового, пальмоядрового, соевого, хлопкового, а также рапсового масла и китового жира. Пищевой саломас используется для изготовления маргариновой продукции, кондитерских, хлебобулочных изделий.

В фармацевтической промышленности для изготовления препаратов (рыбий жир в капсулах), как основа для мазей, суппозиториев, кремов, эмульсий.

Заключение

Сложные эфиры широко используются в технической, пищевой и фармацевтической промышленностях. Изделия и продукты этих промышленностей широко используются человеком в быту. Человек сталкивается со сложными эфирами, употребляя определенные продукты питания и лекарственные средства, используя парфюмерию, одежду из определенных тканей и некоторые инсектициды, мыло и бытовую химию.

Одни представители данного класса органических соединений безопасны, другие требуют ограниченного применения и осторожности при использовании.

В целом, можно сделать вывод, что сложные эфиры занимают прочное положение во многих сферах жизни человека.

Список используемых источников

1. Карцова А.А. Покорение вещества. Органическая химия: пособие--СПб: Химиздат, 1999. --272 с.

2. Пустовалова Л.М. Органическая химия. -- Ростов н/Д: Феникс, 2003 -- 478 с.

3. http://ru.wikipedia.org

4. http://files.school-collection.edu.ru

5. http://www.ngpedia.ru

6. http://www.xumuk.ru

7. http://www.ximicat.com

Размещено на Allbest.ru

Подобные документы

    Способы получения сложных эфиров. Основные продукты и области применения эфиров. Условия проведения реакции этерификации органических кислот со спиртами. Катализаторы процесса. Особенности технологического оформления реакционного узла этерификации.

    реферат , добавлен 27.02.2009

    Способы получения, физические свойства, биологическое значение и методы синтеза простых эфиров. Примеры сложных эфиров, их химические и физические свойства. Методы получения: этерия, взаимодействие ангидридов со спиртами или солей с алкилгалогенидами.

    презентация , добавлен 06.10.2015

    Классификация, свойства, распространение в природе, основной способ получения эфиров карбоновых кислот путем алкилирования их солей алкилгалогенидами. Реакции этерификации и переэтерификация. Получение, восстановление и гидролиз сложных эфиров (эстеров).

    лекция , добавлен 03.02.2009

    Общее определение сложных эфиров алифатичеких карбоновых кислот. Физические и химические свойства. Методы получения сложных эфиров. Реакция этерификации и ее стадии. Особенности применения. Токсическое действие. Ацилирование спиртов галогенангидридами.

    реферат , добавлен 22.05.2016

    Открытие сложных эфиров первооткрывателем, русским академиком Тищенко Вячеславом Евгеньевичем. Структурная изомерия. Общая формула сложных эфиров, их классификация и состав, применение и получение. Липиды (жиры), их свойства. Состав пчелиного воска.

    презентация , добавлен 19.05.2014

    Номенклатура сложных эфиров. Классификация и состав основных сложных эфиров. Основные химические свойства, производство и применение бутилацетата, бензойного альдегида, анисового альдегида, ацетоина, лимонена, земляничного альдегида, этилформиата.

    презентация , добавлен 20.05.2013

    История открытия производных карбоновых кислот, в которых атом водорода карбоксильной группы замещен на углеводородный радикал. Номенклатура и изомерия, классификация и состав сложных эфиров. Их физические и химические свойства, способы получения.

    презентация , добавлен 14.09.2014

    Изучение физических свойств сложных эфиров, которые широко распространены в природе, а также находят свое применение в технике и промышленности. Сложные эфиры высших карбоновых кислот и высших одноосновных спиртов (восков). Химические свойства жиров.

    презентация , добавлен 29.03.2011

    Свойства изоамилацетата. Практическое применение в качестве растворителя в различных отраслях промышленности. Методика синтеза (уксусная кислота и уксуснокислый натрий). Реакция этерификации и гидролиз сложных эфиров. Механизм реакции этерификации.

    курсовая работа , добавлен 17.01.2009

    Основные классы органических кислородосодержащих соединений. Методы получения простых эфиров. Межмолекулярная дегидратация спиртов. Синтез простых эфиров по Вильямсону. Получение симметричных простых эфиров из неразветвленных первичных спиртов.

На карбоновый радикал. Различают моно-, ди- и полиэфиры. Для одноосновных кислот существуют моноэфиры, двух- и многоосновных кислот - полные и кислые эфиры. Название эфира состоит из названия кислоты и спирта, участвующих в его образовании. Для наименования эфиров часто используют тривиальную или историческую номенклатуру. Согласно номенклатуре ИЮПАК названия эфиров образуются так: берут в виде радикала название спирта, добавляют наименование кислоты как углеводорода и окончание -оат. Например, структурные формулы эфиров (изомеры и метамеры), соответствующие молекулярной формуле С4Н802, по разным номенклатурам называются так: пропилформиат (пропилметаноат), изопропилформиат (изоприпилметаноат), этилацетат (этилетаноат), мелпропионат (метилпропаноат).

Получение сложных эфиров . Данные соединения широко распространены в природе. Так, эфиры низкомолекулярных и средних карбоновых кислот являются частью эфирных масел многих растений (например, уксусноизоамиловый эфир, или «грушевая эссенция», которая входит в состав груш и многих цветов), а эфиры глицерола и высших жирных кислот - химической основой всех жиров и масел. Некоторые сложные эфиры получают синтетическим путем.

Реакция этерификации происходит в результате взаимодействия карбоновых (и минеральных) кислот со спиртами. В качестве катализатора выступает сильная минеральная кислота (чаще всего используют H2S04). Катализатор активирует молекулу

Этерификации зависит также и от того, с каким атомом углерода связана ОН-группа (первичным, вторичным или третичным), от химической природы кислоты и спирта, а также структуры углеводородной цепи, которая связана с карбоксилом.

Гидролиз сложных эфиров . (омыления) сложных эфиров - это оборотная реакция этерификации. Проходит она медленно. Если добавить к реакционной смеси смесь минеральных кислот или щелочей, ее скорость увеличивается. Омыление щелочами происходит в тысячу раз быстрее, чем кислотами. Сложные эфиры гидролизируются в щелочной среде, а простые эфиры - в кислой.

При нагревании сложных эфиров со спиртами в присутствии сульфатной кислоты или алкоголятов (в щелочной среде) происходит обмен алкоксигруппами. При этом образуется новый эфир, а в реакционную среду возвращается спирт, который раньше входил в виде остатков в состав молекулы эфира.

Сложные эфиры : реакция восстановления. Восстановителями чаще всего бывают алюмогидраты лития, натрия в кипящем спирте. Высокую стойкость эфиров к действию разных окислителей используют в химическом синтезе или анализе для защиты спиртовых и фенольных групп.

Сложные эфиры: основные представители. Этилэтаноат (уксусноэтиловый эфир) получают вследствие реакции этерификации ацетатной кислоты и этанола (катализатор Этилэтаноат используют в качестве растворителя нитрата целлюлозы в производстве бездымного пороха, фото- и кинопленки, компонент фруктовых эссенций для пищевой промышленности.

Изоамилэтаноат (уксусноизоамиловый эфир, «грушевая эссенция») хорошо растворим в этаноле, диэтиловом эфире. Получают этерификацией ацетатной кислоты и изоамилового спирта. Изоамилметилбутаноат используют в качестве ароматического компонента в парфюмерии и как растворитель.

Изоамилизовалериат («яблочная» эссенция, изовалериановоизоамиловый эфир) получают реакцией этерификации изовалериановой кислоты и изоамилового спирта. Указанный эфир используется в качестве фруктовой эссенции в пищевой промышленности.

Образующиеся в результате реакции друг с другом двух молекул спирта, - это простые эфиры. Связь образуется через кислородный атом. В ходе реакции отщепляется молекула воды (H 2 O), при этом друг с другом взаимодействуют два гидроксила. По номенклатуре симметричные эфиры, то есть состоящие из одинаковых молекул, допускается называть тривиальными названиями. Например, вместо диэтилового - этиловый. Название соединений с разными радиклами строят по алфавиту. По этому правилу метилэтиловый эфир будет звучать верно, наоборот - нет.

Структура

В связи с многообразием спиртов, вступающих в реакцию, при их взаимодействии могут образоваться существенно отличающиеся по своей структуре простые эфиры. Общая формула структуры данных соединений выглядит так: R-O-R ´ . Буквы «R» обозначают радикалы спиртов, то есть, проще говоря, всю остальную углеводородную часть молекулы, кроме гидроксила. Если у спирта таких групп больше одной, то он может образовывать несколько связей с разными соединениями. Молекулы спиртов могут также иметь в своей структуре циклические фрагменты и вообще представлять полимеры. Например, при взаимодействии целлюлозы с метанолом и/или этанолом образуются простые эфиры. Общая формула данных соединений при реакции одинаковых по структуре спиртов выглядит так же (см. выше), но убирается знак дефиса. Во всех остальных случаях он означает, что радикалы в молекуле простого эфира могут быть различными.

Циклические эфиры

Особая разновидность простых эфиров - циклические. Наиболее известными среди них являются оксиэтан и тетрагидрофуран. Образование простых эфиров данной структуры происходит в результате взаимодействия двух гидроксилов одной молекулы многоатомного спирта. В результате формируется цикл. В отличие от линейных эфиров, циклические способны в большей степени образовать водородные связи, и поэтому они менее летучи и лучше растворимы в воде.

Свойства простых эфиров

В физическом плане простые эфиры представляют собой летучие жидкости, но есть достаточно много и кристаллических представителей.

Данные соединения плохо растворимы в воде, и многие из них обладают приятным запахом. Есть одно качество, благодаря которому в лабораториях в качестве органических растворителей активно используют простые эфиры. Химические свойства данных соединений достаточно инертны. Многие из них не подвергаются гидролизу - обратной реакции, происходящей с участием воды и приводящей к образованию двух молекул спирта.

Химические реакции с участием эфиров

Химические реакции простых эфиров в основном осуществимы только при высокой температуре. Например, при нагреве до температуры выше 100 о С метилфениловый эфир (C 6 H 5 -O-CH 3) взаимодействует с бромоводородной (HBr) или йодоводородной кислотой (HI) с образованием фенола и бромметила (СН 3 Br) или йодметила (СН 3 I), соответственно.

Таким же образом могут реагировать многие представители данной группы соединений, в частности метилэтиловый и диэтиловый эфир. Галоген, как правило, присоединяется к более короткому радикалу, например:

  • С 2 Н 5 -O-СН 3 + HBr → СН 3 Br + С 2 Н 5 OH.

Другой реакцией, в которую вступают простые эфиры, является взаимодействие с кислотами Льюиса. Таким термином называют молекулу или ион, который является акцептором и соединяется с донором, имеющим неподеленную пару электронов. Так, в качестве таких соединений могут выступать фторид бора (BF 3), хлорид олова (SnCI 4). Взаимодействуя с ними, эфиры образуют комплексы, называемые оксониевыми солями, к примеру:

  • C 2 H 5 -O-CH 3 + BF 3 → -B(-)F 3 .

Способы получения простых эфиров

Получение простых эфиров происходит разными путями. Один из способов заключается в дегидратации спиртов с использованием в качестве водоотнимающего средства концентрированной серной кислоты (H 2 SO 4). Реакция протекает при 140 о С. Таким способом получают только соединения из одного спирта. Например:

  • С 2 Н 5 ОН + H 2 SO 4 → С 2 Н 5 SO 4 Н + Н 2 O;
    С 2 Н 5 SO 4 Н + НОС 2 Н 5 → С 2 Н 5 -О-С 2 Н 5 + H 2 SO 4 .

Как видно из уравнений, синтез диэтилового эфира протекает в 2 ступени.

Другой способ синтеза простых эфиров происходит по реакции Вильямсона. Суть ее заключается во взаимодействии алкоголята калия или натрия. Так называются продукты замещения протона гидроксильной группы спирта на металл. Например, этилат натрия, изопропилат калия и прочее. Вот пример данной реакции:

  • СН 3 ONa + С 2 Н 5 Cl → СН 3 -О-С 2 Н 5 + KCl.

Эфиры с двойными связями и циклические представители

Как в других группах органических соединений, среди простых эфиров обнаруживаются соединения с двойными связями. Среди способов получения данных веществ есть особые, не характерные для насыщенных структур. Заключаются они в использовании алкинов, по тройной связи которых происходит присоединение кислорода и образование виниловых эфиров.

Учеными описано получение простых эфиров циклической структуры (оксиранов) с использованием способа окисления алкенов надкислотами, содержащими вместо гидроксильной группы перекисный остаток. Данная реакция также проводится под действием кислорода в присутствии серебряного катализатора.

Применение простых эфиров в лабораториях заключается в активном использовании данных соединений в качестве химических растворителей. Популярным в этом плане является диэтиловый эфир. Как и все соединения данной группы, он инертен, не реагирует с растворяемыми в нем веществами. Температура его кипения составляет чуть более 35 о С, что удобно при необходимости быстрого упаривания.

В простых эфирах легко растворяются такие соединения, как смолы, лаки, красители, жиры. Производные фенола применяются в косметической промышленности в качестве консервантов и антиоксиданстов. Кроме того, эфиры добавляются в моющие средства. Среди данных соединений обнаружены представители, обладающие выраженным инсектицидным действием.

Циклические эфиры сложной структуры применяются при получении полимеров (гликолида, лактида, в частности), используемых в медицине. Они выполняют функцию биосорбируемого материала, который, например, используется для шунтирования сосудов.

Эфиры целлюлозы применяются во многих сферах человеческой деятельности, в том числе в процессе реставрации. Их функция заключается в проклеивании и укреплении изделия. Они применяются при восстановлении бумажных материалов, живописи, тканей. Существует особая методика, заключающаяся в опускании ветхой бумаги в слабый (2%) раствор метилцеллюлозы. Эфиры данного полимера являются устойчивыми к действию химических реагентов и экстремальных условий окружающей среды, негорючи, поэтому применяются для придания прочности каким-либо материалам.

Некоторые примеры использования конкретных представителей эфиров

Простые эфиры применяются во многих областях человеческой деятельности. Например, в качестве добавки к моторному маслу (диизопропиловый эфир), теплоносителя (дифенилоксид). Кроме того, данные соединения используются как промежуточные продукты для получения лекарств, красителей, ароматических добавок (метилфениловый и этилфениловый эфиры).

Интересным эфиром является диоксан, отличающийся хорошей растворимостью и в воде, и позволяющий смешивать данную жидкость с маслами. Особенность его получения заключается в том, что две молекулы этиленгликоля соединяются друг с другом по гидроксильным группам. В результате образуется шестичленный гетероцикл с двумя атомами кислорода. Он образуется под действием концентрированной серной кислоты при 140 о С.

Таким образом, простые эфиры, как и все классы органической химии, отличаются большим разнообразием. Их особенностью является химическая инертность. Связано это с тем, что, в отличие от спиртов, они не имеют атома водорода у кислорода, поэтому он не является столь активным. По этой же причине простые эфиры не образуют водородные связи. Именно вследствие таких свойств они способны смешиваться с различного рода гидрофобными компонентами.

В заключение хотелось бы отметить, что диэтиловый эфир применяется в экспериментах по генетике для усыпления мух дрозофил. Это лишь малая часть того, где используются данные соединения. Вполне возможно, что на основе простых эфиров в будущем изготовят ряд новых прочных полимеров с улучшенной структурой по сравнению с существующими.

А сейчас поговорим о сложных. Сложные эфиры широко распространены в природе. Сказать, что сложные эфиры играют большую роль в жизни человека - ничего не сказать. Мы сталкиваемся с ними, когда нюхаем цветок, обязанный ароматом простейшим сложным эфирам. Подсолнечное или оливковое масло - это тоже сложный эфир, но уже высокомолекулярный - также, как и животные жиры. Мы моемся, моем и стираем средствами, которые получают химической реакцией переработки жиров, то есть сложных эфиров. Еще они используются в самых разных областях производства: с их помощью делают лекарства, краски и лаки, духи, смазки, полимеры, синтетические волокна и многое, многое другое.

Сложные эфиры - органические соединения на основе кислородосодержащих органических карбоновых или неорганических кислот. Структуру вещества можно представить как молекулу кислоты, в которой атом Н в гидроксиле ОН- замещен углеводородным радикалом.

Получают сложные эфиры в результате реакции кислоты и спирта (реакция этерификации).

Классификация

- Фруктовые эфиры - жидкости с фруктовым запахом, молекула содержит не более восьми атомов углерода. Получают из одноатомных спиртов и карбоновых кислот. Эфиры с цветочным запахом получают с помощью ароматических спиртов.
- Воски - твердые вещества, содержат в молекуле от 15 до 45 атомов С.
- Жиры - содержат в молекуле 9-19 атомов углерода. Получают из глицерин а (трехатомного спирта) и высших карбоновых кислот. Жиры могут быть жидкими (растительные жиры, называемые маслами) и твердыми (животные жиры).
- Сложные эфиры минеральных кислот по своим физическим свойствам тоже могут быть как маслянистыми жидкостями (до 8 атомов углерода), так и твердыми веществами (от девяти атомов C).

Свойства

В нормальных условиях сложные эфиры могут быть жидкими без цвета, с фруктовым или цветочным запахом, или твердыми, пластичными; как правило, без запаха. Чем длиннее цепочка углеводородного радикала, тем тверже вещество. Почти неводорастворимы. Хорошо растворяются в органических растворителях. Горючи.

Вступают в реакции с аммиаком с образованием амидов; с водородом (именно эта реакция превращает жидкие растительные масла в твердые маргарины).

В результате реакции гидролиза разлагаются на спирт и кислоту. Гидролиз жиров в щелочной среде приводит к образованию не кислоты, а ее соли - мыла.

Сложные эфиры органических кислот малотоксичны, оказывают на человека наркотическое воздействие, в основном относятся ко 2-му и 3-му классу опасности. Некоторые реактивы на производстве требуют использования специальных средств защиты для глаз и дыхания. Чем больше длина молекулы эфира, теми он токсичнее. Эфиры неорганических фосфорных кислот ядовиты.

В организм вещества могут попадать через органы дыхания и кожу. Симптомами острого отравления служат возбуждение и нарушенная координация движений с последующим угнетением ЦНС. Регулярное воздействие может привести к болезням печени, почек, сердечно-сосудистой системы, нарушениям формулы крови.

Применение

В органическом синтезе.
- Для производства инсектицидов, гербицидов, смазок, пропиток для кожи и бумаги, моющих средств, глицерина, нитроглицерина, олиф, масляных красок, синтетических волокон и смол, полимеров, оргстекла, пластификаторов, реагентов для обогащения руд.
- Как добавка к моторным маслам.
- В синтезе парфюмерных отдушек, пищевых фруктовых эссенций и косметических ароматизаторов; лекарственных средств, например, витаминов А, Е, В1, валидола, мазей.
- Как растворители красок, лаков, смол, жиров, масел, целлюлозы, полимеров.

В ассортименте магазина «ПраймКемикалсГрупп» вы можете купить востребованные сложные эфиры, в том числе бутилацетат и Твин-80.

Бутилацетат

Применяется как растворитель; в парфюмерной промышленности для изготовления отдушек; для дубления кож; в фармацевтике - в процессе изготовления некоторых лекарств.

Твин-80

Он же полисорбат-80, полиоксиэтилен сорбитан моноолеат (основан на сорбите оливкового масла). Эмульгатор, растворитель, техническая смазка, модификатор вязкости, стабилизатор эфирных масел, неионогенный ПАВ, увлажнитель. Входит в состав растворителей и смазочно-охлаждающих жидкостей. Используется для производства продукции косметического, пищевого, бытового, сельскохозяйственного, технического назначения. Обладает уникальным свойством превращать смесь воды и масла в эмульсию.

Коэффициенты