Поляризованный микроскоп. Метод интерференционного контраста (интерференционная микроскопия)

Глоссарий:

  • Поляризованный свет - это световые волны, колебания которых распространяются в одном направлении.
  • Световая волна - это электрическое и магнитное излучение с плоскостью колебания перпендикулярной плоскости распространения волны.
  • Поляризатор (николь I) - это устройство, пропускающее через себя только полностью или частично поляризованный свет. Предназначен для пропускания поляризованного света на(через) исследуемый прозрачный объект и отсекание(рассеивание) неполяризованного (естественного света, искусственного света, в т.ч. излучения осветителя микроскопа). Интенсивность света прошедшего через поляризатор падает пропорционально квадрату косинуса угла между плоскостями поляризации поляризатора и анализатора (закон Малюса):

Где: I - интенсивность до прохождения через поляризатор, I - интенсивность света после прохождения поляризатора, φ - угол между плоскостями поляризации поляризованного света и поляризатора.

  • Анализатор (николь II) - устройство, аналогичное поляризатору, но предназначенное для анализа поляризованного света.

Поворот анализатора относительно поляризатора на угол ϕ. Интенсивность света показана красной стрелкой.

  • Компенсатор - это устройство для определения количественных характеристик поляризации. Преобразует контрастное видимое изображение в цветное, так как гасит определённые длины волн в белом свете.
  • Линейно поляризованный свет - это свет с плоскостью колебания, ограниченной в одном направлении, и распространяющийся в одной плоскости.
  • Фаза колебаний световой волны, с математической точки зрения, это аргумент функции световой волны, то есть ωt+φ 0 в функции sin(ωt+φ 0). С физической, это определённое электромагнитное состояние в определённый момент времени.
  • Длина волны – расстояние между двумя ближайшими точками, находящимися в одной фазе.
  • Отражение - это изменение направления волны. Полным отражением называют изменение угла преломления волны менее 90°.
  • Преломление - это изменение направления волны на границе двух сред. Двойное лучепреломление – это расщепление одного луча света в анизотропной среде на две луча.


Рисунок 4 – Преломление лучей в кристалле исландского шпата.

  • Дихроизм - это частичное поглощение веществом света, в зависимости от его поляризации.
  • Интерференция – это изменение интенсивности света при наложении двух или более световых волн.
  • Разность хода световых лучей – это величина, характеризующая замедление скорости света, при прохождении через прозрачное вещество. Измеряется разность хода расстоянием проходимое светом в вакууме за то же время, которое необходимо для прохождения в исследуемом веществе, в исследуемых точках пространства.
  • Коноскопия – это метод изучения оптических свойств анизотропных объектов в сходящихся лучах поляризованного света. При коноскопии ведётся наблюдения за изменением интерференционной картины при повороте анализатора. Вращая анализатор и поляризатор, друг относительно друга, исследователь наблюдает в микроскоп коноскопические фигуры, состоящие из изогир (это тёмные полосы, соответствующие направлению колебаний световых волн в поляризаторе) и изохром (это полосы разных интерференционных цветов, которые соответствуют направлениям движения лучей в кристалле с одинаковой разностью хода).
  • Ортоскопия – это метод изучения оптических свойств анизотропных объектов в параллельных лучах поляризованного света.
  • Плеохроизм – изменение наблюдаемой окраски некоторых анизотропных объектов при изменении угла наблюдения (изменение цвета кристаллов при повороте столика).

Поляризационный микроскоп - это микроскоп, предназначенный для исследования двойного лучепреломления поляризованного света, проходящего через анизотропную среду

Первый поляризационный микроскоп был сконструирован в 1863 году Генри Клифтоном Сорби и отличался от привычного нам оптического микроскопа, двумя призмами Николя, установленными в оптическом пути. Призма Николя пропускает через себя свет только в одном направлении и в одной плоскости, то есть плоско поляризованный свет, остальной свет, попавший в эти призмы полностью отражается и рассеивается. Эти призмы конструктивно ничем друг от друга не отличаются и выполняют роль поляризаторов (анализатора и поляризатора). Когда плоскость поляризации анализатора повёрнута на 90º, относительно плоскости поляризации поляризатора, исследователь наблюдает поляризационную картину двулучепреломляющего объекта, а все объекты, не обладающие двойным лучепреломлением - затемнены. В современных микроскопах, для получения большего количества информации могут использоваться ДИК призмы (совмещение рельефа с поляризационной картиной, для изучения неокрашенных образцов), компенсаторы (для количественной поляризации), круглый столик (для изучения плеохроизма) и простые поляроиды для несложных наблюдений (например в биологии и медицине).

Наиболее часто поляризация применяется в икроскопах для кристалографии, где свойства анизотропных объектов могут быть определены с помощью коноскопии и ортоскопии. Обратите внимание на сходство и различие коноскопии и ортоскопии: световой пучок, проходит через поляризатор (1), ограничивается апертурной диафрагмой (2), проходит через линзы конденсора (3); анализатор (который поворачивает исследователь) (8) и компенсаторы (7).


Рисунок 1 – Схема поляризационного микроскопа при: а) Ортоскопии б) Коноскопии

Условные обозначения: 1 - поляризатор, 2,6 - диафрагмы; 3 - конденсор; 4 - препарат; 5 - объектив; 7 - компенсатор; 8 - анализатор; 9 - линза Бертрана; 10 - фокальная плоскость окуляра; 11 - окуляр.

Наблюдаемая картина состоит из коноскопических фигур. коноскопические фигуры – состоят из изогир (это тёмные прямые или изогнутые полосы, в которых направления колебаний параллельны главным сечениям николей) и изохром (это полосы, окрашенные в различные интерференционные цвета. Каждая полоса соответствует направлениям лучей, образовавшихся при двулучепреломлении, и имеющим одинаковую разность хода).

Приведём пример: в пластинках одноосного кристалла, вырезанного перпендикулярно оптической оси, мы увидим изогиру в форме креста и концентрические кольца изохромы см. рис. 5.


Рисунок 5 – А) Коноскопические фигуры одноосного минерала кальцита Б) Двуосного минерала флогопита со вставленным компенсатором.

По характеру полученной интерференционной картины проводится измерение величины двойного лучепреломления, углов поворота плоскости поляризации, углов погасания, определение количества оптических осей и других характеристик. Все эти характеристики дают понять какой кристалл наблюдает исследователь, его строение. Для минералогии и кристаллографии сконструированы такие микроскопы как BX53P и H600P. Они оснащаются лучшей оптикой, свободной от напряжений и компенсаторами, изготовленными на современном оборудовании, исключающим люфт и зазоры при их установки в микроскоп.

Двулучепреломление применяется не только в кристаллографии, но и в медицине, биологии, криминалистике и металлографии, потому как исследователям важно быстро и точно выделять витамины, кислоты, минералы, напряжения в изотропных объектах, неметаллические включения в исходном образце и другие. Например, микроскопы для гистологии и цитологии оснащаются поляризаторами для выявления разного рода объектов. Круглые объекты с диаметром около 2,4 мкм, липоиды и капли, при скрещенных поляризаторах образуют интерференционную картину мальтийский крест. Не все вещества обладают одинаковыми свойствами лучепреломления при разных температурах, так, например, можно выделить 1) вещества приобретающие анизатропные свойства при охлаждении и теряющие их при нагревании: холестерин и его эфиры 2) не теряющие своих анизатропных свойств при нагревании: цереброзиды, фосфатиды, миелины. Такая изменчивость свойств обусловлена способностью вещества поддерживать кристаллическую структуру, т.к. именно она обуславливает двулучепреломление. Наблюдая анизатропные объекты в поляризационном микроскопе и определяя их концентрацию, можно диагностировать такие заболевания как: артрит, атеросклероз, липоидурия, цилинурия и липидоз по свечению липидов при скрещенных поляризаторах, а также подагру, мочекаменную болезнь, селикоз и асбестос по кристаллам мочевины, двуокиси кремния и асбестовым волокнам соответственно. Для гистологии и цитологии разработан микроскоп BX46, который оснащён низким столиком, мощным осветителем и регулируемый по высоте тубус, который избавит спину исследователя от затекания.

Окраску отличную от изотропных объектов, в поляризованном свете имеют: крахмал, целлюлоза, некоторые кислоты, витамин С, поэтому микроскопы для фармакологии и фармацевтики так же должны оснащаться поляризаторами. Фармакологический микроскоп, это и CX43, и BX43, и другие модели, потому что исследований в этой области с каждым годом всё больше,а новые объекты исследований требуют иного подхода.

В криминалистике важно отличить вкрапления зёрен кварца и других минералов от органики и других материалов, которые можно найти на месте преступления, поэтому микроскоп должен обязательно быть оснащён отражённым светом, чтобы рассматривать и непрозрачные объекты. Для криминалистики подойдёт микроскоп BX53M , так как он оснащается не только мощным источником проходящего света, но и таким же мощным осветителем отражённого света, а провставки для увеличения рабочего расстояния микроскопа, позволят проводить исследования очень больших объектов не проводя долгой предварительной подготовки.

В металлографии тоже применяются поляризационные микроскопы, но для подобных исследований достаточно знать наличие или отсутствие анизатропных объектов, а так же их пространственное распределение. Именно для классификации и подсчёта таких объектов, в металлографии можно использовать микроскопы VHX6000, BX53P с установленным Stream.

Из всего многообразия устройств для микроскопии, поляризационные микроскопы являются самыми сложными в техническом плане. Такое внимание к конструкции прибора по части технологичности обусловлено необходимостью получать изображение высочайшего качества, на которое непосредственно влияют конструкция оптической и осветительной частей микроскопа. Основная область использования поляризационных устройств для микроскопии - это изучение минералов, кристаллов, шлаков, анизотропных объектов, текстильной и огнеупорной продукции, а также других материалов, для которых свойственно двойное лучепреломление. На последнем принципе и построено формирование изображения в таких устройствах для микроскопии, в которых исследуемый образец облучается поляризационными лучами. При этом, анизотропные свойства образцов проявляются после изменения направления луча. Для этих целей, в конструкции поляризационных микроскопов предусмотрены вращающиеся в различных плоскостях относительно друг друга поляфильтры: анализатор поворачивается на 180 градусов, а поляризатор - на 360. Основной особенностью устройств для микроскопии в поляризационном свете является возможность проводить ортоскопические и коноскопические исследования, недоступные при использовании большинства других типов микроскопов.

Исследование образца под поляризационным микроскопом начинается с установки поляризатора в осветительной части микроскопа под конденсор, рядом с апертурной диафрагмой. При этом, анализатор находится между окуляром и объективом - за последним по ходу лучей света. При правильной настройке такого прибора для микроскопии, после скрещивания поляфильтров, видимое поле будет равномерно темным, образуя, так называемый, эффект погашения. По завершении настроек устройства, исследуемый образец закрепляется на предметном столике и проводится его изучение. Столики поляризационных микроскопов центрируются относительно оптической оси и могут поворачиваются на 360 градусов, а в подобных устройствах для лабораторных и исследовательских целей, так же имеют нониус. Оптика и осветительная система поляризационных микроскопов высочайшего качества и такой точности изготовления, что позволяет получать максимально четкое изображение без искажений. Часто в комплект устройств для проведения исследований образцов в поляризационном свете входят компенсатор и линза Бертрана. Первая дает возможность эффективно исследовать структуру минералов, а линза - увеличивать и сосредотачивать область наблюдения при появлении изменений изображения после поворота предметного столика. Сегодня на рынке представлены три основных типа таких устройств для микроскопии - это уже упомянутые исследовательские и лабораторные, а также рабочий поляризационный микроскоп.

Поляризационная микроскопия

Поляризационная микроскопия позволяет изучать объекты исследования в свете, образованном двумя лучами, поляризованными во взаимно перпендикулярных плоскостях, т. е. в поляризованном свете. Для этого используют пленчатые поляроиды или призмы Николя, которые помещают в микроскопе между источником света и препаратом. Поляризация меняется при прохождении лучей света через различные структурные компоненты клеток и тканей, свойства которых неоднородны, или при отражении от них.

В оптически изотропных структурах скорость распространения поляризованного света не зависит от плоскости поляризации, в анизотропных структурах она меняется в зависимости от направления света по продольной или поперечной оси объекта. Если показатель преломления света вдоль структуры больше, чем в поперечном направлении, возникает положительное двойное лучепреломление, при обратных взаимоотношениях -- отрицательное двойное лучепреломление. Многие биологические объекты имеют строгую молекулярную ориентацию, являются анизотропными и вызывают положительное двойное преломление света .

Темнопольная микроскопия

При микроскопии по методу темного поля препарат освещается сбоку косыми пучками лучей, не попадающими в объектив. В объектив попадают лишь лучи, которые отклоняются частицами препарата в результате отражения, преломления или дифракции. В силу этого микробные клетки и другие частицы представляются ярко светящимися на черном фоне (картина напоминает мерцающее звездное небо).

Для микроскопии в темном поле используют специальный конденсор (параболоид-конденсор или кардиоид-конденсор) и обычные объективы. Так как апертура иммерсионного объектива больше, чем апертура конденсора темного поля, внутрь иммерсионного объектива вставляется специальная трубчатая диафрагма, снижающая его апертуру.

Гистологическое исследование - это исследование тканей под микроскопом. А цитологическое исследование отличается от гистологического тем, что при нём проводится не исследование ткани, а исследование клеток.

Виды микроскопии

Методы световой микроскопии
Методы световой микроскопии (освещения и наблюдения). Методы микроскопии выбираются (и обеспечиваются конструктивно) в зависимости от характера и свойств изучаемых объектов, так как последние, как отмечалось выше, влияют на контрастность изображения.

Метод светлого поля и его разновидности
Метод светлого поля в проходящем свете применяется при изучении прозрачных препаратов с включенными в них абсорбирующими (поглощающими свет) частицами и деталями. Это могут быть, например, тонкие окрашенные срезы животных и растительных тканей, тонкие шлифы минералов и т. д.

Метод темного поля и его разновидности
Используют специальный конденсор, выделяющий контрастирующие структуры не окрашенного материала. При этом лучи от осветителя падают на препарат под косым углом, и объект исследования проявляется освещенным в темном поле..

Метод фазового контраста
При прохождении света через окрашенные объекты изменяется амплитуда световой волны, а при прохождении света через неокрашенные — фаза световой волны, что и используют для получения высоко контрастного изображения.

Поляризационная микроскопия
Поляризационная микроскопия позволяет изучать ультраструктурную организацию тканевых компонентов на основе анализа анизотропии и/или двойного лучепреломления

Метод интерференционного контраста
Метод интерференционного контраста (интерференционная микроскопия) состоит в том, что каждый луч раздваивается, входя в микроскоп. Один из полученных лучей направляется сквозь наблюдаемую частицу, другой - мимо неё по той же или дополнительной оптической ветви микроскопа. В окулярной части микроскопа оба луча вновь соединяются и интерферируют между собой. Один из лучей, проходя через объект, запаздывает по фазе (приобретает разность хода по сравнению со вторым лучом). Величина этого запаздывания измеряется компенсатором

Метод исследования в свете люминесценции
Метод исследования в свете люминесценции (люминесцентная микроскопия, или флуоресцентная микроскопия) состоит в наблюдении под микроскопом зелено-оранжевого свечения микрообъектов, которое возникает при их освещении сине-фиолетовым светом или не видимыми глазом ультрафиолетовыми лучами.

Ультрафиолетовая микроскопия . Основана на применении ультрафиолетовых лучей с длиной волны менее 380 нм, что позволяет увеличить разрешающую способность объективов с 0,2…0,3 мкм до 0,11 мкм. Требует применения специальных ультрафиолетовых микроскопов, в которых используются ультрафиолетовые осветители, кварцевая оптика и преобразователи ультрафиолетовых лучей в видимую часть спектра. Многие вещества, входящие в состав клеток (например, нуклеиновые кислоты), избирательно поглощают ультрафиолетовые лучи, что используется для определения количества этих веществ в клетке.

Трансмиссионная микроскопия . В трансмиссионных микроскопах электроны проходят через образец. Энергия электронов сравнительно невелика (до 50 кВ); при этом происходит их рассеивание и поглощение. Для создания контрастного изображения применяются особые методы подготовки материала.

Сканирующие электронные микроскопы основаны на сканировании образца. При этом точно сфокусированный пучок электронов пробегает по поверхности образца, а отраженные электроны формируют изображение, подобное трехмерному. Разрешающая способность сканирующего микроскопа меньше, чем у трансмиссионного (5…20 нм).

Высоковольтные электронные микроскопы основаны на использовании электронов сверхвысоких энергий (до 1 МВ – одного миллиона вольт). Столь мощные пучки пробивают относительно толстые срезы (до 5 мкм), что позволяет использовать этот тип микроскопии для изучения целостных клеток.

Метод замораживания – скалывания.

Клетки замораживают при температуре жидкого азота (196 О С) в присутствии криопротектора и используют для изготовления сколов. Плоскости скола проходят через гидрофобную середину двойного слоя липидов. Обнажённую внутреннюю поверхность мембран оттеняют платиной, полученные реплики изучают в сканирующем ЭМ. Затем, обычно в вакуумной камере, избыток льда удаляют возгонкой. Эта операция называется травлением. После травления более резко обозначается рельеф в плоскости скола. Полученный образец оттеняется, то есть на поверхность образца напыляется тонкий слой тяжелых металлов.

Культура тканей, микрургия.

Метод культуры клеток и тканей

заключается в выращивании клеток и тканей вне организма в искусственных питательных средах. Метод позволяет изучать реакции клеток на различные воздействия, механизмы регуляции пролиферации, дифференцировки и гибели.

Микрургия (micrurgia; микр + ergon - работа, действие) - совокупность методических приемов и технических средств для осуществления операций на очень мелких объектах: одноклеточных организмах, отдельных клетках многоклеточных, внутриклеточных структурах.

Клеточная инженерия, понятие о гетерокарионе, гибридизация.

Гетерокарион — соматическая клетка, образованная в результате слияния родительских клеток с гаплоидными генетически различными ядрами. Образовавшиеся гетерокарионы дают начало двум одноядерным гибридным клеткам.

В 1965 году английский ученый Г. Харрис впервые получил гетерокарионы, образованные клетками мыши и человека.

Гибридизация- процесс образования или получения гибридов , в основе которого лежит объединение генетического материала разных клеток в одной клетке

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Световая микроскопия

Электронная микроскопия

Поляризационная микроскопия

Приложение 1

Световая микроскопия

Световая микроскопия - это самый древний и в тоже время один из распространенных методов исследования и изучения растительной и животной клетки. Предполагается, что начало изучения клетки было именно с изобретением светового оптического микроскопа. Главная характеристика светового микроскопа - это разрешение светового микроскопа, определяемое длиной световой волны. Предел разрешения светового микроскопа определяется длиной световой волны, оптический микроскоп используется для изучения структур, которые имеют минимальные размеры равные длине волны светового излучения. Многие составляющие клетки близки по своей оптической плотности и требуют предварительной обработки перед микрокопированием, в противном же случае они практически не видны в обычный световой микроскоп. Для того, чтобы сделать их видимыми, используют различные красители, обладающие определенной избирательностью. Используя избирательные красители, появляется возможность более подробно исследовать внутреннее строение клетки.

Например:

краситель гематоксилин окрашивает некоторые компоненты ядра в синий или фиолетовый цвет;

после обработки последовательно флороглюцином и затем соляной кислотой одревесневшие оболочки клеток становятся вишнево - красными;

краситель судан III окрашивает опробковевшие клеточные оболочки в розовый цвет;

слабый раствор йода в йодистом калии окрашивает крахмальные зерна в синий цвет».

При проведении микроскопических исследований большую часть тканей перед началом окраски фиксируют.

После фиксации клетки становятся проницаемыми для красителей, а структура клетки стабилизируется. Одним из наиболее распространенных фиксаторов в ботанике является этиловый спирт.

В ходе приготовления препарата для микрокопирования выполняют тонкие срезы на микротоме (приложение 1, рис.1). В этом приборе использован принцип хлеборезки. Для растительных тканей изготавливают чуть более толстые срезы, чем для животных, поскольку клетки растений относительно крупней. Толщина срезов растительных тканей для - 10 мкм - 20 мкм. Некоторые ткани слишком мягкие, чтобы из них сразу же можно было получить срезы. Поэтому после фиксации их заливают в расплавленный парафин или специальную смолу, которые пропитывают всю ткань. После охлаждения образуется твердый блок, который потом режется на микротоме. Это объясняется тем, что растительные клетки имеют прочные клеточные стенки, составляющие каркас ткани. Особенно прочны одревесневшие оболочки.

Пользуясь заливкой при приготовлении, срез возникает опасность нарушения структуры клетки, для предотвращения этого пользуются методом быстрого замораживания. При использовании этого метода обходятся обойтись без фиксации и заливки. Замороженную ткань режут на специальном микротоме - криотоме (приложение 1, рис. 2).

Замороженные срезы лучше сохраняют особенности естественной структуры. Однако их труднее готовить, а присутствие кристаллов льда нарушает некоторые детали.

фазово-контрастный (прилож. 1, рис. 3) и интерференционный микроскопы (прилож.1, рис.4) позволяют исследовать под микроскопом живые клетки с четким проявлением детали их строения. В этих микроскопах используют 2 пучка световых волн, которые взаимодействуют (налагаются) друг на друга, усиливая или уменьшая амплитуду волн, поступающих в глаз от разных компонентов клетки.

Световая микроскопия имеет несколько разновидностей.

Метод светлого поля и его разновидности

Метод светлого поля в проходящем свете используют при изучении прозрачных препаратов с включенными в них поглощающими свет частицами и деталями (тонкие окрашенные срезы животных и растительных тканей, тонкие шлифы минералов). В отсутствие препарата пучок света из конденсора, проходя через объектив, даёт вблизи фокальной плоскости окуляра равномерно освещенное поле. При наличии в препарате абсорбирующего элемента происходит частичное поглощение и частичное рассеивание падающего на него света, что и обусловливает появление изображения. Возможно применение метода и при наблюдении неабсорбирующих объектов, но лишь в том случае, если они рассеивают освещающий пучок настолько сильно, что значительная часть его не попадает в объектив.

Метод косого освещения - разновидность предыдущего метода. Отличие между ними состоит в том, что свет на объект направляют под большим углом к направлению наблюдения. Иногда это помогает выявить «рельефность» объекта за счёт образования теней.

Метод светлого поля в отражённом свете применяется при исследовании непрозрачных отражающих свет объектов, например шлифов металлов или руд. Освещение препарата (от осветителя и полупрозрачного зеркала) производится сверху, через объектив, который одновременно играет и роль конденсора. В изображении, создаваемом в плоскости объективом совместно с тубусной линзой, структура препарата видна из-за различия в отражающей способности её элементов; на светлом поле выделяются также неоднородности, рассеивающие падающий на них свет.

Метод темного поля и его разновидности

Метод тёмного поля в проходящем свете используется для получения изображений прозрачных неабсорбирующих объектов, которые не могут быть видны, если применить метод светлого поля. Зачастую это биологические объекты. Свет от осветителя и зеркала направляется на препарат конденсором специальной конструкции - т. н. конденсором тёмного поля. По выходе из конденсора основная часть лучей света, не изменившая своего направления при прохождении через прозрачный препарат, образует пучок в виде полого конуса и не попадает в объектив (который находится внутри этого конуса). Изображение в микроскопе формируется при помощи лишь небольшой части лучей, рассеянных микрочастицами находящегося на предметном стекле препарата внутрь конуса и прошедшими через объектив. В поле зрения на тёмном фоне видны светлые изображения элементов структуры препарата, отличающихся от окружающей среды показателем преломления. У крупных частиц видны только светлые края, рассеивающие лучи света. Используя этот метод, нельзя определить по виду изображения, прозрачны частицы или непрозрачны, больший или меньший показатель преломления они имеют по сравнению с окружающей средой.

Электронная микроскопия

Первый электронный микроскоп сконструировали в 1931 г. Кнолл и Руска в Германии. Лишь в 50-е годы были разработаны методы изготовления срезов, обладающих необходимыми качествами.

Сложности электронной микроскопии состоят в том, что для исследования биологических образцов необходима специальная обработка препаратов.

Первая трудность заключается в том, что электроны обладают очень ограниченной проникающей способностью, поэтому следует изготавливать ультратонкие срезы, толщиной 50 - 100 нм. Для того, чтобы получить столь тонкие срезы, ткани сперва пропитывают смолой: смола полимеризуется и формирует твердый пластмассовый блок. Затем с помощью острого стеклянного или алмазного ножа срезы нарезают на специальном микротоме.

Есть еще одна трудность: при прохождении через биологическую ткань электронов не получается контрастного изображения. Для того, чтобы получить контраст, тонкие срезы биологических образцов пропитывают солями тяжелых металлов.

Существует два основных типа электронных микроскопов. В трансмиссионном (просвечивающем) микроскопе пучок электронов, проходя сквозь специально подготовленный образец, оставляет его изображение на экране. Разрешающая способность современного трансмиссионного электронного микроскопа почти в 400 раз больше светового. Эти микроскопы имеют разрешающую способность около 0,5 нм.

Несмотря на столь высокое разрешение, просвечивающие электронные микроскопы имеют крупные недостатки:

приходится работать с фиксированными материалами;

изображение на экране получается двумерным (плоским);

при обработке тяжелыми металлами разрушаются и видоизменяются некоторые клеточные структуры.

Трехмерное (объемное) изображение получают с помощью сканирующего электронного микроскопа (ЭМ). Здесь луч не проходит через образец, а отражается от его поверхности.

Исследуемый образец фиксируют и высушивают, после чего покрывают тонким слоем металла операция называется оттенением (образец оттеняют).

В сканирующем ЭМ сфокусированный электронный пучок направляется на образец (образец сканируют). В результате металлическая поверхность образца испускает вторичные электроны слабой энергии. Они регистрируются и преобразуются в изображение на телевизионном экране. Максимальное разрешение сканирующего микроскопа невелико, около 10 нм, но зато изображение получается объемным.

Разновидности электронной микроскопии:

Амплитудная электронная микроскопия - Методы амплитудной электронной микроскопии могут быть использованы для обработки изображений аморфных и других тел (размеры частиц которых меньше разрешаемого в электронном микроскопе расстояния), рассеивающих электроны диффузно. В просвечивающем электронном микроскопе, например, контраст изображения, т. е. перепад яркостей изображения соседних участков объекта, в первом приближении пропорционален перепаду толщин этих участков.

Фазовая электронная микроскопия - Для расчёта контраста изображений кристаллических тел, имеющих регулярные структуры, а также для решения обратной задачи - расчёта структуры объекта по наблюдаемому изображению - применяются методы фазовой электронной микроскопии. Рассматривается задача о дифракции электронной волны на кристаллической решетке, при решении которой дополнительно учитываются неупругие взаимодействия электронов с объектом: рассеяние на плазмах, фононах и т. п. В просвечивающих электронных микроскопах и растровых просвечивающих электронных микроскопах высокого разрешения получают изображения отдельных молекул или атомов тяжелых элементов. Привлекая методы фазовой электронной микроскопии, можно восстанавливать по изображениям трехмерную структуру кристаллов и биологических макромолекул.

Количественная электронная микроскопия - Методы количественной электронной микроскопии - это точное измерение различных параметров образца или исследуемого процесса, например измерение локальных электрических потенциалов, магнитных полей, микрогеометрии поверхностного рельефа и т. д.

Лоренцова электронная микроскопия - Областью исследования Лоренцовой электронной микроскопии, в которой изучают явления, обусловленные силой Лоренца, являются внутренние магнитные и электрические поля или внешние поля рассеяния, например, поля магнитных доменов в тонких пленках, сегнетоэлектрических доменов, поля головок для магнитной записи информации и т. п.

Поляризационная микроскопия

Поляризационная микроскопия - это метод наблюдения в поляризованном свете для микроскопического исследования препаратов, включающих оптически анизотропные элементы (или целиком состоящих из таких элементов). Таковыми являются многие минералы, зёрна в шлифах сплавов, некоторые животные и растительные ткани и пр. Наблюдение можно проводить как в проходящем, так и в отражённом свете. Свет, излучаемый осветителем, пропускают через поляризатор. Сообщенная ему при этом поляризация меняется при последующем прохождении света через препарат (или отражении от него). Эти изменения изучаются с помощью анализатора и различных оптических компенсаторов. Анализируя такие изменения, можно судить об основных оптических характеристиках анизотропных микрообъектов: силе двойного лучепреломления, количестве оптических осей и их ориентации, вращении плоскости поляризации, дихроизме.

Метод фазового контраста

Метод фазового контраста и его разновидность - т. н. метод «аноптрального» контраста предназначены для получения изображений прозрачных и бесцветных объектов, невидимых при наблюдении по методу светлого поля. К таковым относятся, например, живые неокрашенные животные ткани. Суть метода в том, что даже при очень малых различиях в показателях преломления разных элементов препарата световая волна, проходящая через них, претерпевает разные изменения по фазе (приобретает т. н. фазовый рельеф). Не воспринимаемые непосредственно ни глазом, ни фотопластинкой, эти фазовые изменения с помощью специального оптического устройства преобразуются в изменения амплитуды световой волны, т. е. в изменения яркости («амплитудный рельеф»), которые уже различимы глазом или фиксируются на фоточувствительном слое. Иными словами, в получаемом видимом изображении распределение яркостей (амплитуд) воспроизводит фазовый рельеф. Получаемое таким образом изображение называется фазово-контрастным.

Типичная схема работы метода: в переднем фокусе конденсора устанавливается апертурная диафрагма, отверстие которой имеет форму кольца. Её изображение возникает вблизи заднего фокуса объектива, и там же устанавливается т. н. фазовая пластинка, на поверхности которой имеется кольцевой выступ или кольцевая канавка, называемая фазовым кольцом. Фазовая пластинка не всегда помещена в фокусе объектива - часто фазовое кольцо наносят прямо на поверхность одной из линз объектива.

В любом случае не отклонённые в препарате лучи от осветителя, дающие изображение диафрагмы, должны полностью проходить через фазовое кольцо, которое значительно ослабляет их (его делают поглощающим) и изменяет их фазу на л/4 (л -- длина волны света). А лучи, даже ненамного отклоненные (рассеянные) в препарате, проходят через фазовую пластинку, минуя фазовое кольцо, и не претерпевают дополнительного сдвига фазы.

С учётом фазового сдвига в материале препарата полная разность фаз между отклоненными и не отклонёнными лучами близка к 0 или л/2, и в результате интерференции света в плоскости изображения препарата они заметно усиливают или ослабляют друг друга, давая контрастное изображение структуры препарата. Отклоненные лучи имеют значительно меньшую амплитуду по сравнению с не отклонёнными, поэтому ослабление основного пучка в фазовом кольце, сближая значения амплитуд, также приводит к большей контрастности изображения.

Метод дает возможность различать малые элементы структуры, чрезвычайно слабоконтрастные в методе светлого поля. Прозрачные частицы, сравнительно не малые по размерам, рассеивают лучи света на столь небольшие углы, что эти лучи проходят вместе с не отклонёнными через фазовое кольцо. Для таких частиц фазово-контрастный эффект имеет место только вблизи их контуров, где происходит сильное рассеяние.

Метод наблюдения в инфракрасных лучах

Метод наблюдения в инфракрасных (ИК) лучах также требует преобразования невидимого для глаза изображения в видимое с использованием фотографирования или с помощью электронно-оптического преобразователя. ИК микроскопия дает возможность изучать внутреннюю структуру тех объектов, которые непрозрачны в видимом свете, например тёмных стекол, некоторых кристаллов и минералов и пр

Метод наблюдения в ультрафиолетовых лучах

Метод наблюдения в ультрафиолетовых (УФ) лучах делает возможным увеличение предельной разрешающей способности микроскопа. Главное преимущество метода состоит в том, что частицы многих веществ, прозрачные в видимом свете, сильно поглощают УФ излучение определённых длин волн и, следовательно, легко различимы в УФ изображениях. Характерными спектрами поглощения в УФ области обладают многие вещества, содержащиеся в растительных и животных клетках (пуриновые основания, пиримидиновые основания, большинство витаминов, ароматические аминокислоты, некоторые липиды, тироксин и др.).

Так как ультрафиолетовые лучи невидимы для человеческого глаза, то изображения в УФ микроскопии регистрируют либо фотографически, либо с помощью электронно-оптического преобразователя или люминесцирующего экрана. Препарат фотографируется в трёх длинах волн УФ области спектра. Каждый из полученных негативов освещается видимым светом определённого цвета (например, синим, зелёным и красным), и все они одновременно проектируются на один экран. Результат - цветное изображение объекта в условных цветах, зависящих от поглощающей способности препарата в ультрафиолете.

Микрофотографирование и микрокиносъёмка - это получение с помощью микроскопа изображений на светочувствительных слоях. Данный метод широко применяется совместно со всеми другими методами микроскопического исследования. Для микрофото- и микрокиносъёмки требуется некоторая перестройка оптической системы микроскопа -- иная по сравнению с визуальным наблюдением фокусировки окуляра относительно изображения, даваемого объективом. Микрофотография необходима при документировании исследований, при изучении объектов в невидимых для глаза УФ и ИК лучах (см. выше), а также объектов со слабой интенсивностью свечения. Микрокиносъёмка незаменима при исследовании процессов, развёртывающихся во времени (жизнедеятельности тканевых клеток и микроорганизмов, роста кристаллов, протекания простейших химических реакций и т. п.).

Метод интерференционного контраста

Метод интерференционного контраста (интерференционная микроскопия) состоит в том, что каждый луч раздваивается, входя в микроскоп. Один из полученных лучей направляется сквозь наблюдаемую частицу, другой - мимо неё по той же или дополнительной оптической ветви микроскопа. В окулярной части микроскопа оба луча вновь соединяются и интерферируют между собой. Конденсор и объектив снабжены двояко-преломляющими пластинками, из которых первая расщепляет исходный световой луч на два луча, а вторая воссоединяет их. Один из лучей, проходя через объект, запаздывает по фазе (приобретает разность хода по сравнению со вторым лучом). Величина этого запаздывания измеряется компенсатором. Этот метод дает возможность наблюдать прозрачные и бесцветные объекты, но их изображения могут быть и разноцветными (интерференционные цвета). Этот метод пригоден для изучения живых тканей и клеток и применяется во многих случаях именно с этой целью. Метод интерференционного контраста часто применяют совместно с другими методами микроскопии, в частности с наблюдением в поляризованном свете. Его применение в сочетании с микроскопией в ультрафиолетовых лучах позволяет, к примеру, определить содержание нуклеиновых кислот в общей сухой массе объекта.

Метод исследования в свете люминесценции

Метод исследования в свете люминесценции состоит в наблюдении под микроскопом зелено-оранжевого свечения микрообъектов, которое возникает при их освещении сине-фиолетовым светом или не видимыми глазом ультрафиолетовыми лучами. В оптическую схему микроскопа вводятся два светофильтра. Один из них помещают перед конденсором. Он пропускает от источника-осветителя излучение только тех длин волн, которые возбуждают люминесценцию либо самого объекта (собственная люминесценция), либо специальных красителей, введённых в препарат и поглощённых его частицами (вторичная люминесценция). Второй светофильтр, который установлен после объектива, пропускает к глазу наблюдателя (или на фоточувствительный слой) только свет люминесценции. В люминесцентной микроскопии используют освещение препаратов как сверху (через объектив, который в этом случае служит и конденсором), так и снизу, через обычный конденсор. Метод нашел широкое применение в микробиологии, вирусологии, гистологии, цитологии, в пищевой промышленности, при исследовании почв, в микрохимическом анализе, в дефектоскопии. Такое многообразие применений объясняется очень высокой цветовой чувствительностью глаза и высокой контрастностью изображения самосветящегося объекта на тёмном не люминесцирующем фоне.

Метод реплик

Метод реплик используют для изучения поверхностной геометрической структуры массивных тел. С поверхности такого тела снимается отпечаток в виде тонкой плёнки углерода, коллодия, формвара и др., повторяющий рельеф поверхности и рассматривается в просвечивающем электронном микроскопе. Обычно предварительно под скользящим (малым к поверхности) углом на реплику в вакууме напыляется слой сильно рассеивающего электроны тяжёлого металла, оттеняющего выступы и впадины геометрического рельефа.

Метод декорирования

Метод декорирования исследует не только геометрическую структуру поверхностей, но и микрополя, обусловленные наличием дислокаций, скопления точечных дефектов, ступени роста кристаллических граней, доменную структуру и т. д. Согласно этому методу, на поверхность образца вначале напыляется очень тонкий слой декорирующих частиц (атомы Au, Pt и др., молекулы полупроводников или диэлектриков), осаждающихся преимущественно на участках сосредоточения микрополей, а затем снимается реплика с включениями декорирующих частиц.

Для получения клеточных фракций широко применяются различные виды центрифугирования: дифференциальное центрифугирование, зональное центрифугирование и равновесное центрифугирование в градиенте плотности. Теоретические и практические вопросы, связанные с центрифугированием, всесторонне разобраны в обзоре Сайкса.

Дифференциальное центрифугирование

В случае дифференциального центрифугирования образцы центрифугируют определенное время при заданной скорости, после чего удаляют надосадочную жидкость. Этот метод полезен для разделения частиц, сильно различающихся по скорости седиментации. Например, центрифугирование в течение 5--10 мин при 3000-- 5000 д приводит к осаждению интактных бактериальных клеток, тогда как большинство клеточных фрагментов при этом остается в надосадочной жидкости. Фрагменты клеточной стенки и большие мембранные структуры можно осадить центрифугированием при 20 000--50 000 § в течение 20 мин, в то время как маленькие мембранные везикулы и рибосомы требуют для осаждения центрифугирования при 200 000 § в течение 1 ч.

Зональное центрифугирование

Зональное центрифугирование представляет собой эффективный способ разделения структур, имеющих сходную плавучую плотность, но различающихся по форме и массе частиц. В качестве примеров можно привести разделение субъединиц рибосом, различных классов полисом, а также молекул ДНК, имеющих различную форму. Центрифугирование осуществляют либо в бакет-роторах, либо в специально устроенных зональных роторах; для предотвращения конвекции при центрифугировании в стаканах бакет-ротора или в камере зонального ротора создают слабый градиент (обычно сахарозы). Пробу наносят в виде зоны или узкой полосы в самом верху градиентного столбика. Для субклеточных частиц обычно используется градиент сахарозы от 15 до 40% (вес/объем).

Метод Лауэ

применяется для монокристаллов. Образец облучается пучком с непрерывным спектром, взаимная ориентация пучка и кристалла не меняется. Угловое распределение дифрагированного излучения имеет вид отдельных дифракционных пятен (лауэграмма).

Метод Дебая-Шеррера

Используется для исследования поликристаллов и их смесей. Хаотическая ориентация кристаллов в образце относительно падающего монохроматического пучка превращает дифрагированные пучки в семейство коаксиальных конусов с падающим пучком на оси. Их изображение на фотоплёнке (дебаеграмма) имеет вид концентрических колец, расположение и интенсивность которых позволяет судить о составе исследуемого вещества.

Метод клеточных культур

Некоторые ткани удается разделить на отдельные клетки так, что клетки при этом остаются живыми и часто способны к размножению. Этот факт окончательно подтверждает представление о клетке как единице живого. Губку, примитивный многоклеточный организм, можно разделить на клетки путем протирания сквозь сито. Через некоторое время эти клетки вновь соединяются и образуют губку. Эмбриональные ткани животных можно заставить диссоциировать с помощью ферментов или другими способами, ослабляющими связи между клетками.

Американский эмбриолог Р. Гаррисон (1879-1959) первым показал, что эмбриональные и даже некоторые зрелые клетки могут расти и размножаться вне тела в подходящей среде. Эта техника, называемая культивированием клеток, была доведена до совершенства французским биологом А.Каррелем (1873-1959). Растительные клетки тоже можно выращивать в культуре, однако по сравнению с животными клетками они образуют большие скопления и прочнее прикрепляются друг к другу, поэтому в процессе роста культуры образуются ткани, а не отдельные клетки. В клеточной культуре из отдельной клетки можно вырастить целое взрослое растение, например морковь.

Метод микрофигурии

С помощью микроманипулятора отдельные части клетки можно удалять, добавлять или каким-то образом видоизменять. Крупную клетку амебы удается разделить на три основных компонента - клеточную мембрану, цитоплазму и ядро, а затем эти компоненты можно вновь собрать и получить живую клетку. Таким путем могут быть получены искусственные клетки, состоящие из компонентов разных видов амеб.

Если принять во внимание, что некоторые клеточные компоненты представляется возможным синтезировать искусственно, то опыты по сборке искусственных клеток могут оказаться первым шагом на пути к созданию в лабораторных условиях новых форм жизни. Поскольку каждый организм развивается из одной единственной клетки, метод получения искусственных клеток в принципе позволяет конструировать организмы заданного типа, если при этом использовать компоненты, несколько отличающиеся от тех, которые имеются у ныне существующих клеток. В действительности, однако, полного синтеза всех клеточных компонентов не требуется. Структура большинства, если не всех компонентов клетки, определяется нуклеиновыми кислотами. Таким образом, проблема создания новых организмов сводится к синтезу новых типов нуклеиновых кислот и замене ими природных нуклеиновых кислот в определенных клетках.

Метод слияния клеток

Другой тип искусственных клеток может быть получен в результате слияния клеток одного или разных видов. Чтобы добиться слияния, клетки подвергают воздействию вирусных ферментов; при этом наружные поверхности двух клеток склеиваются вместе, а мембрана между ними разрушается, и образуется клетка, в которой два набора хромосом заключены в одном ядре. Можно слить клетки разных типов или на разных стадиях деления. Используя этот метод, удалось получить гибридные клетки мыши и цыпленка, человека и мыши, человека и жабы. Такие клетки являются гибридными лишь изначально, а после многочисленных клеточных делений теряют большинство хромосом либо одного, либо другого вида. Конечный продукт становится, например, по существу клеткой мыши, где человеческие гены отсутствуют или имеются лишь в незначительном количестве. Особый интерес представляет слияние нормальных и злокачественных клеток. В некоторых случаях гибриды становятся злокачественными, в других нет, т.е. оба свойства могут проявляться и как доминантные, и как рецессивные. Этот результат не является неожиданным, так как злокачественность может вызываться различными факторами и имеет сложный механизм.

клетка микроскопия световой

Приложение 1

Рисунок 2. Криотом Рисунок 3. Фазово-контрастный микроскоп

Рисунок 4. Интерференционный микроскоп

Размещено на Allbest.ru

...

Подобные документы

    Изучение строения и принципов работы светового и электронного микроскопов. Рассмотрение методов темного и светлого поля, фазово-контрастной микроскопии, интерференции и поляризации. Витальное фиксированное изучение клеток. Основы электронной микроскопии.

    лекция , добавлен 16.05.2014

    Сканирующий туннельный микроскоп, применение. Принцип действия атомного силового микроскопа. Исследование биологических объектов – макромолекул (в том числе и молекул ДНК), вирусов и других биологических структур методом атомно-силовой микроскопии.

    курсовая работа , добавлен 28.04.2014

    Понятие электронной микроскопии как совокупности методов исследования с помощью электронных микроскопов микроструктур тел, их локального состава. Содержание телевизионного принципа развертки тонкого пучка электронов или ионов по поверхности образца.

    презентация , добавлен 22.08.2015

    Измерение размеров малых объектов. Метод фазового контраста. Понятие об электронной оптике. Создание электронного микроскопа. Опыты по дифракции электронов. Исследования поверхностной геометрической структуры клеток, вирусов и других микрообъектов.

    презентация , добавлен 12.05.2017

    Электронно-микроскопический метод исследования. Физические основы растровой электронной микроскопии. Схема растрового электронного микроскопа, назначение его узлов и их функционирование. Подготовка объектов для исследований и особые требования к ним.

    курсовая работа , добавлен 04.05.2011

    Оптический диапазон спектра. Теоретические основы оптических методов НК. Световые колебания. Классификация оптических методов НК. Дискретный спектр излучения газов и жидкостей. Непрерывный спектр собственного излучения твёрдых тел с разной температурой.

    реферат , добавлен 15.01.2009

    Общая характеристика методов, применяемых для измерения параметров капилляров фильер: голографической интерферометрии, Фурье-оптики, микроскопический. Сравнительный анализ рассмотренных методов, определение их основных преимуществ и недостатков.

    контрольная работа , добавлен 20.05.2013

    Создание атомного силового микроскопа, принцип действия, преимущества и недостатки. Методы атомно-силовой микроскопии. Технические возможности атомного силового микроскопа. Применение атомно-силовой микроскопии для описания деформаций полимерных пленок.

    курсовая работа , добавлен 14.11.2012

    История микроскопа - прибора для получения увеличенного изображения объектов, не видимых невооруженным глазом. Методы световой микроскопии. Принцип действия и устройство металлографического микроскопа. Методы микроскопического исследования металлов.

    реферат , добавлен 10.06.2009

    Основы сканирующей электронной микроскопии. Методические особенности электронно-микроскопического исследования металлических расплавов. Особенности микроскопов, предназначенных для исследования структуры поверхностных слоев металлических расплавов.

Коэффициенты