Относительный показатель преломления таблица. Коэффициент преломления

Лабораторная работа

Преломление света. Измерение показателя преломления жидкости

с помощью рефрактометра

Цель работы : углубление представлений о явлении преломления света; изучение методики измерения показателя преломления жидких сред; изучение принципа работы с рефрактометром.

Оборудование : рефрактометр, растворы поваренной соли, пипетка, мягкая ткань для протирания оптических деталей приборов.

Теория

Законы отражения и преломления света. Показатель преломления.

На границе раздела сред свет меняет направление своего распространения. Часть световой энергии возвращается в первую среду, т.е. происходит отражение света. Если вторая среда прозрачна, то часть света при определенных условиях проходит через границу раздела сред, меняя при этом, как правило, направление распространения. Это явление называется преломлением света (рис. 1).

Рис. 1. Отражение и преломление света на плоской границе раздела двух сред.

Направление отраженного и преломленного лучей при прохождении света через плоскую границу раздела двух прозрачных сред определяются законами отражения и преломления света.

Закон отражения света. Отраженный луч лежит в одной плоскости с падающим лучом и нормалью, восстановленной к плоскости раздела сред в точке падения. Угол падения равен углу отражения
.

Закон преломления света. Преломленный луч лежит в одной плоскости с падающим лучом и нормалью, восстановленной к плоскости раздела сред в точке падения. Отношение синуса угла падения α к синусу угла преломления β есть величина постоянная для данных двух сред, называемая относительным показателем преломления второй среды по отношению к первой:

Относительный показатель преломления двух сред равен отношению скорости распространения света в первой среде v 1 к скорости света во второй среде v 2:

Если свет идет из вакуума в среду, то показатель преломления среды относительно вакуума называется абсолютным показателем преломления этой среды и равен отношению скорости света в вакууме с к скорости света в данной среде v:

Абсолютные показатели преломления всегда больше единицы; для воздуха n принят за единицу.

Относительный показатель преломления двух сред можно выразить через их абсолютные показатели n 1 и n 2 :

Определение показателя преломления жидкости

Для быстрого и удобного определения показателя преломления жидкостей существует специальные оптические приборы – рефрактометры, основной частью которых являются две призмы (рис. 2): вспомогательная Пр. 1 и измерительная Пр.2. В зазор между призмами наливается исследуемая жидкость.

При измерениях показателей могут быть использованы два метода: метод скользящего луча (для прозрачных жидкостей) и метод полного внутреннего отражения (для темных, мутных и окрашенные растворов). В данной работе используется первый из них.

В методе скользящего луча свет от внешнего источника проходит сквозь грань призмы Пр.1, рассеивается на ее матовой поверхности АС и далее через слой исследуемой жидкости проникает в призму Пр.2. Матовая поверхность становится источником лучей всех направлений, поэтому она может наблюдаться сквозь грань Е F призмы Пр.2. Однако грань АС можно наблюдать сквозь Е F только под углом, большим некоторого предельного минимального угла i . Величина этого угла однозначно связана с показателем преломления жидкости, находящейся между призмами, что и случит основной идеей конструкции рефрактометра.

Рассмотрим прохождение света через грань ЕF нижней измерительной призмы Пр.2. Как видно из рис. 2, применяя дважды закон преломления света, можно получить два соотношения:

(1)

(2)

Решая эту систему уравнений, нетрудно прийти к выводу, что показатель преломления жидкости

(3)

зависит от четырех величин: Q , r , r 1 и i . Однако не все они независимы. Так, например,

r + s = R , (4)

где R - преломляющий угол призмы Пр.2 . Кроме того, задав углу Q максимальное значение 90°, из уравнения (1) получим:

(5)

Но максимальному значению угла r , как это видно из рис. 2 и соотношений (3) и (4), соответствуют минимальные значения углов i и r 1 , т.е. i min и r min .

Таким образом, показатель преломления жидкости для случая «скользящих» лучей связан только с углом i . При этом существует минимальное значение угла i , когда грань АС еще наблюдается, т. е. в поле зрения она кажется зеркально белой. Для меньших углов наблюдения грань не видна, и в поле зрения это место кажется черным. Поскольку зрительная труба прибора захватывает сравнительно широкую угловую зону, то в поле зрения одновременно наблюдаются светлый и черный участки, граница между которыми соответствует минимальному углу наблюдения и однозначно связана с показателем преломления жидкости. Используя окончательную расчетную формулу:

(ее вывод опущен) и ряд жидкостей с известными показателями преломления, можно проградуировать прибор, т. е. установить однозначное соответствие между показателями преломления жидкостей и углами i min . Все приведенные формулы выведены для лучей одной какой-либо длины волны.

Свет различных длин волн будет преломляться с учетом дисперсии призмы. Таким образом, при освещении призмы белым светом граница раздела будет размыта и окрашена в различные цвета вследствие дисперсии. Поэтому в каждом рефрактометре есть компенсатор, который позволяет устранить результат дисперсии. Он может состоятьиз одной или двух призм прямого зрения - призм Амичи. Каждая призма Амичи состоит из трех стеклянных призм с различными показателями преломления и различной дисперсией, например, крайние призмы изготовлены из кронгласа, а средняя - из флинтгласа (кронглас и флинтглас - сорта стекол). Поворотом призмы компенсатора с помощью специального устройства добиваются резкого без окраски изображения границы раздела, положение которой соответствует значению показателя преломления для желтой линии натрия λ =5893 Å (призмы рассчитаны так, чтобы лучи с длиной волны 5893 Å не испытывали вних отклонения).

Лучи, прошедшие компенсатор, попадают в объектив зрительной трубы, далее через обращающую призму проходят через окуляр зрительной трубы в глаз наблюдателя. Схематический ход лучей показан на рис. 3.

Шкала рефрактометра отградуирована в значениях показателя преломления и концентрации раствора сахарозы в воде и расположена в фокальной плоскости окуляра.

Обратимся к более подробному рассмотрению показателя преломления, введенного нами в §81 при формулировке закона преломления.

Показатель преломления зависит от оптических свойств и той среды, из которой луч падает, и той среды, в которую он проникает. Показатель преломления, полученный в том случае, когда свет из вакуума падает на какую-либо среду, называется абсолютным показателем преломления данной среды.

Рис. 184. Относительный показатель преломления двух сред:

Пусть абсолютный показатель преломления первой среды есть а второй среды - . Рассматривая преломление на границе первой и второй сред, убедимся, что показатель преломления при переходе из первой среды во вторую, так называемый относительный показатель преломления, равен отношению абсолютных показателей преломления второй и первой сред:

(рис. 184). Наоборот, при переходе из второй среды в первую имеем относительный показатель преломления

Установленная связь между относительным показателем преломления двух сред и их абсолютными показателями преломления могла бы быть выведена и теоретическим путем, без новых опытов, подобно тому, как это можно сделать для закона обратимости (§82),

Среда, обладающая большим показателем преломления, называется оптически более плотной. Обычно измеряется показатель преломления различных сред относительно воздуха. Абсолютный показатель преломления воздуха равен . Таким образом, абсолютный показатель преломления какой-либо среды связан с ее показателем преломления относительно воздуха формулой

Таблица 6. Показатель преломления различных веществ относительно воздуха

Жидкости

Твердые вещества

Вещество

Вещество

Спирт этиловый

Сероуглерод

Глицерин

Стекло (легкий крон)

Жидкий водород

Стекло (тяжелый флинт)

Жидкий гелий

Показатель преломления зависит от длины волны света, т. е. от его цвета. Различным цветам соответствуют различные показатели преломления. Это явление, называемое дисперсией, играет важную роль в оптике. Мы неоднократно будем иметь дело с этим явлением в последующих главах. Данные, приведенные в табл. 6, относятся к желтому свету.

Интересно отметить, что закон отражения может быть формально записан в том же виде, что и закон преломления. Вспомним, что мы условились всегда измерять углы от перпендикуляра к соответствующему лучу. Следовательно, мы должны считать угол падения и угол отражения имеющими противоположные знаки, т.е. закон отражения можно записать в виде

Сравнивая (83.4) с законом преломления, мы видим, что закон отражения можно рассматривать как частный случай закона преломления при . Это формальное сходство законов отражения и преломления приносит большую пользу при решении практических задач.

В предыдущем изложении показатель преломления имел смысл константы среды, не зависящей от интенсивности проходящего через нее света. Такое истолкование показателя преломления вполне естественно, однако в случае больших интенсивностей излучения, достижимых при использовании современных лазеров, оно не оправдывается. Свойства среды, через которую проходит сильное световое излучение, в этом случае зависят от его интенсивности. Как говорят, среда становится нелинейной. Нелинейность среды проявляется, в частности, в том, что световая волна большой интенсивности изменяет показатель преломления. Зависимость показателя преломления от интенсивности излучения имеет вид

Здесь - обычный показатель преломления, а - нелинейный показатель преломления, - множитель пропорциональности. Добавочный член в этой формуле может быть как положительным, так и отрицательным.

Относительные изменения показателя преломления сравнительно невелики. При нелинейный показатель преломления . Однако даже такие небольшие изменения показателя преломления ощутимы: они проявляются в своеобразном явлении самофокусировки света.

Рассмотрим среду с положительным нелинейным показателем преломления. В этом случае области повышенной интенсивности света являются одновременной областями увеличенного показателя преломления. Обычно в реальном лазерном излучении распределение интенсивности по сечению пучка лучей неоднородно: интенсивность максимальна по оси и плавно спадает к краям пучка, как это показано на рис. 185 сплошными кривыми. Подобное распределение описывает также изменение показателя преломления по сечению кюветы с нелинейной средой, вдоль оси которой распространяется лазерный луч. Показатель преломления, наибольший по оси кюветы, плавно спадает к ее стенкам (штриховые кривые на рис. 185).

Пучок лучей, выходящий из лазера параллельно оси, попадая в среду с переменным показателем преломления , отклоняется в ту сторону, где больше. Поэтому повышенная интенсивность вблизи осп кюветы приводит к концентрации световых лучей в этой области, показанной схематически в сечениях и на рис. 185, а это приводит к дальнейшему возрастанию . В конечном итоге эффективное сечение светового пучка, проходящего через нелинейную среду, существенно уменьшается. Свет проходит как бы по узкому каналу с повышенным показателем преломления. Таким образом, лазерный пучок лучей сужается, нелинейная среда под действием интенсивного излучения действует как собирающая линза. Это явление носит название самофокусировки. Его можно наблюдать, например, в жидком нитробензоле.

Рис. 185. Распределение интенсивности излучения и показателя преломления по сечению лазерного пучка лучей на входе в кювету (а), вблизи входного торца (), в середине (), вблизи выходного торца кюветы ()

Законы физики играют очень важную роль при проведении расчетов для планирования определенной стратегии производства какого-либо товара или при составлении проекта строительства сооружений различного назначения. Многие величины являются расчетными, так что перед стартом работ по планированию производятся измерения и вычисления. Например, показатель преломления стекла равен отношению синуса угла падения к синусу угла преломления.

Так что вначале идет процесс измерения углов, затем вычисляют их синус, а уже только потом можно получить искомое значение. Несмотря на наличие табличных данных, стоит каждый раз проводить дополнительные расчеты, так как в справочниках зачастую используются идеальные условия, которых добиться в реальной жизни практически невозможно. Поэтому на деле показатель обязательно будет отличаться от табличного, а в некоторых ситуациях это имеет принципиальное значение.

Абсолютный показатель

Абсолютный показатель преломления зависит от марки стекла, так как на практике имеется огромное количество вариантов, отличающихся по составу и степени прозрачности. В среднем он составляет 1,5 и колеблется вокруг этого значения на 0,2 в ту или иную сторону. В редких случаях могут быть отклонения от этой цифры.

Опять-таки, если важен точный показатель, то без дополнительных измерений не обойтись. Но и они не дают стопроцентно достоверного результата, так как на итоговое значение будет влиять положение солнца на небосводе и облачность в день измерений. К счастью, в 99,99% случае достаточно просто знать, что показатель преломления такого материала, как стекло больше единицы и меньше двойки, а все остальные десятые и сотые доли не играют роли.

На форумах, которые занимаются помощью в решении задач по физике, часто мелькает вопрос, каков показатель преломления стекла и алмаза? Многие думают, что раз эти два вещества похожи внешне, то и свойства у них должны быть примерно одинаковыми. Но это заблуждение.

Максимальное преломление у стекла будет находиться на уровне около 1,7, в то время как у алмаза этот показатель достигает отметки 2,42. Данный драгоценный камень является одним из немногих материалов на Земле, чей уровень преломления превышает отметку 2. Это связано с его кристаллическим строением и большим уровнем разброса световых лучей. Огранка играет в изменениях табличного значения минимальную роль.

Относительный показатель

Относительный показатель для некоторых сред можно охарактеризовать так:

  • - показатель преломления стекла относительно воды составляет примерно 1,18;
  • - показатель преломления этго же материала относительно воздуха равен значению 1,5;
  • - показатель преломления относительно спирта - 1,1.

Измерения показателя и вычисления относительного значения проводятся по известному алгоритму. Чтобы найти относительный параметр, нужно разделить одно табличное значение на другое. Или же произвести опытные расчеты для двух сред, а потом уже делить полученные данные. Такие операции часто проводятся на лабораторных занятиях по физике.

Определение показателя преломления

Определить показатель преломления стекла на практике довольно сложно, потому что требуются высокоточные приборы для измерения начальных данных. Любая погрешность будет возрастать, так как при вычислении используются сложные формулы, требующие отсутствия ошибок.

Вообще данный коэффициент показывает, во сколько раз замедляется скорость распространения световых лучей при прохождении через определенное препятствие. Поэтому он характерен только для прозрачных материалов. За эталонное значение, то бишь за единицу, взят показатель преломления газов. Это было сделано для того, чтобы можно было отталкиваться от какого-нибудь значения при расчетах.

Если солнечный луч падает на поверхность стекла с показателем преломления, который равен табличному значению, то изменить его можно несколькими способами:

  • 1. Поклеить сверху пленку, у которой коэффициент преломления будет выше, чем у стекла. Этот принцип используется в тонировке окон автомобиля, чтобы улучшить комфорт пассажиров и позволить водителю более четко наблюдать за дорожной обстановкой. Также пленка будет сдерживать и ультрафиолетовое излучение.
  • 2. Покрасить стекло краской. Так поступают производители дешевых солнцезащитных очков, но стоит учесть, что это может быть вредно для зрения. В хороших моделях стекла сразу производятся цветными по специальной технологии.
  • 3. Погрузить стекло в какую-либо жидкость. Это полезно исключительно для опытов.

Если луч света переходит из стекла, то показатель преломления на следующем материале рассчитывается при помощи использования относительного коэффициента, который можно получить, сопоставив между собой табличные значения. Эти вычисления очень важны при проектировке оптических систем, которые несут практическую или экспериментальную нагрузку. Ошибки здесь недопустимы, потому что они приведут к неправильной работе всего прибора, и тогда любые полученные с его помощью данные будут бесполезны.

Чтобы определить скорость света в стекле с показателем преломления, нужно абсолютное значение скорости в вакууме разделить на величину преломления. Вакуум используется в качестве эталонной среды, потому что там не действует преломление из-за отсутствия каких-либо веществ, которые могли бы мешать беспрепятственному движению световых лучей по заданной траектории.

В любых расчетных показателях скорость будет меньше, чем в эталонной среде, так как коэффициент преломления всегда больше единицы.

Процессы, которые связаны со светом, являются важной составляющей физики и окружают нас в нашей обыденной жизни повсеместно. Самые важные в данной ситуации являются законы отражения и преломления света, на которых зиждется современная оптика. Преломление света является важной составляющей частью современной науки.

Эффект искажения

Эта статья расскажет вам, что собой представляет явление преломления света, а также как выглядит закон преломления и что из него вытекает.

Основы физического явления

При падении луча на поверхность, которая разделяется двумя прозрачными веществами, имеющими разную оптическую плотность (к примеру, разные стекла или в воде), часть лучей будет отражена, а часть – проникнет во вторую структуру (например, пойдет распространяться в воде или стекле). При переходе из одной среды в другую для луча характерно изменение своего направления. Это и есть явление преломления света.
Особенно хорошо отражение и преломление света видно в воде.

Эффект искажения в воде

Смотря на вещи, находящиеся в воде, они кажутся искаженными. Особенно это сильно заметно на границе между воздухом и водой. Визуально кажется, что подводные предметы слегка отклонены. В описываемом физическом явлении как раз и кроется причина того, что в воде все объекты кажутся искаженными. При попадании лучей на стекло, данный эффект менее заметен.
Преломление света представляет собой физическое явление, которое характеризуется изменением направления движения солнечного луча в момент перемещения из одной среды (структуры) в другую.
Для улучшения понимания данного процесса, рассмотрим пример попадания луча из воздуха в воду (аналогично для стекла). При проведении перпендикуляра вдоль границы раздела можно измерить угол преломления и возвращения светового луча. Данный показатель (угол преломления) будет изменяться при проникновении потока в воду (внутрь стекла).
Обратите внимание! Под данным параметром понимается угол, который образует перпендикуляр, проведенный к разделу двух веществ при проникновении луча из первой структуры во вторую.

Прохождение луча

Этот же показатель характерен и для других сред. Установлено, что данный показатель зависит от плотности вещества. Если падение луча происходит из менее плотной в более плотную структуру, то угол создаваемого искажения будет больше. А если наоборот – то меньше.
При этом изменение наклона падения также скажется и на данном показателе. Но отношение между ними не остается постоянным. В то же время, отношение их синусов останется постоянной величиной, которую отображает следующая формула: sinα / sinγ = n, где:

  • n – постоянная величина, которая описана для каждого конкретного вещества (воздуха, стекла, воды и т.д.). Поэтому, какова будет данная величина можно определить по специальным таблицам;
  • α – угол падения;
  • γ – угол преломления.

Для определения этого физического явления и был создан закон преломления.

Физический закон

Закон преломления световых потоков позволяет определить характеристики прозрачных веществ. Сам закон состоит из двух положений:

  • первая часть. Луч (падающий, измененный) и перпендикуляр, который был восстановлен в точке падения на границе, например, воздуха и воды (стекла и т.д.), будут располагаться в одной плоскости;
  • вторая часть. Показатель соотношения синуса угла падения к синусу этого же угла, образовавшегося при переходе границы, будет величиной постоянной.

Описание закона

При этом в момент выхода луча из второй структуры в первую (например, при прохождении светового потока из воздуха, через стекло и обратно в воздух), также будет возникать эффект искажения.

Важный параметр для разных объектов

Основной показатель в данной ситуации — это соотношение синуса угла падения к аналогичному параметру, но для искажения. Как следует из закона, описанного выше, данный показатель являет собой постоянную величину.
При этом при изменении значения наклона падения, такая же ситуация будет характерна и для аналогичного показателя. Данный параметр имеет большое значение, поскольку является неотъемлемой характеристикой прозрачных веществ.

Показатели для разных объектов

Благодаря этому параметру можно довольно эффективно различать виды стекол, а также разнообразные драгоценные камни. Также он важен для определения скорости перемещения света в различных средах.

Обратите внимание! Наивысшая скорость светового потока – в вакууме.

При переходе из одного вещества в другие, его скорость будет уменьшаться. К примеру, у алмаза, который обладает самым большим показателем преломляемости, скорость распространения фотонов будет в 2,42 раза выше, чем у воздуха. В воде же они будут распространяться медленнее в 1,33 раза. Для разных видов стекол данный параметр колеблется в диапазоне от 1,4 до 2,2.

Обратите внимание! Некоторые стекла имеют показатель преломляемости 2,2, что очень близко к алмазу (2,4). Поэтому не всегда получится отличить стекляшку от реального алмаза.

Оптическая плотность веществ

Свет может проникать через разные вещества, которые характеризуются различными показателями оптической плотности. Как мы уже говорили ранее, используя данный закон можно определить характеристику плотности среды (структуры). Чем более плотной она будет, тем с меньшей скоростью в ней будет распространяться свет. Например, стекло или вода будут более оптически плотными, чем воздух.
Кроме того, что данный параметр является постоянной величиной, он еще и отражает отношение скорости света в двух веществах. Физический смысл можно отобразить в виде следующей формулы:

Данный показатель говорит, каким образом изменяется скорость распространения фотонов при переходе из одного вещества в другое.

Еще один важный показатель

При перемещении светового потока через прозрачные объекты возможна его поляризация. Она наблюдается при прохождении светового потока от диэлектрических изотропных сред. Поляризация возникает при прохождении фотонов через стекло.

Эффект поляризации

Частичная поляризация наблюдается, когда угол падения светового потока на границе двух диэлектриков будет отличаться от нуля. Степень поляризации зависит от того, каковы были углы падения (закон Брюстера).

Полноценное внутреннее отражение

Завершая наш небольшой экскурс, еще необходимо рассмотреть такой эффект, как полноценное внутреннее отражение.

Явление полноценного отображения

Для появления данного эффекта необходимо увеличение угла падения светового потока в момент его перехода из более плотного в менее плотную среду в границе раздела между веществами. В ситуации, когда данный параметр будет превосходить определенное предельное значение, тогда фотоны, падающие на границу этого раздела будут полностью отражаться. Собственно это и будет наше искомое явление. Без него невозможно было сделать волоконную оптику.

Заключение

Практическое применение особенностей поведения светового потока дали очень многое, создав разнообразные технические приспособления для улучшения нашей жизни. При этом свет открыл перед человечеством далеко не все свои возможности и его практический потенциал еще полностью не реализован.


Как сделать бумажный светильник своими руками
Как проверить работоспособность светодиодной ленты

Билет 75.

Закон отражения света : падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости (плоскость падения). Угол отражения γ равен углу падения α.

Закон преломления света : падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления β есть величина, постоянная для двух данных сред:

Законы отражения и преломления находят объяснение в волновой физике. Согласно волновым представлениям, преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую. Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ 1 к скорости их распространения во второй среде υ 2:

Рис 3.1.1 иллюстрирует законы отражения и преломления света.

Среду с меньшим абсолютным показателем преломления называют оптически менее плотной.

При переходе света из оптически более плотной среды в оптически менее плотную n 2 < n 1 (например, из стекла в воздух) можно наблюдать явление полного отражения , то есть исчезновение преломленного луча. Это явление наблюдается при углах падения, превышающих некоторый критический угол α пр, который называется предельным углом полного внутреннего отражения (см. рис. 3.1.2).

Для угла падения α = α пр sin β = 1; значение sin α пр = n 2 / n 1 < 1.

Если второй средой является воздух (n 2 ≈ 1), то формулу удобно переписать в виде

Явление полного внутреннего отражения находит применение во многих оптических устройствах. Наиболее интересным и практически важным применением является создание волоконных световодов, которые представляют собой тонкие (от нескольких микрометров до миллиметров) произвольно изогнутые нити из оптически прозрачного материала (стекло, кварц). Свет, попадающий на торец световода, может распространяться по нему на большие расстояния за счет полного внутреннего отражения от боковых поверхностей (рис 3.1.3). Научно-техническое направление, занимающееся разработкой и применением оптических световодов, называется волоконной оптикой.

Диспе"рсия све"та (разложение света) - это явление, обусловленное зависимостью абсолютного показателя преломления вещества от частоты (или длины волны) света (частотная дисперсия) , или, то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты) . Экспериментально открыта Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее.

Пространственной дисперсией называется зависимость тензора диэлектрической проницаемости среды от волнового вектора. Такая зависимость вызывает ряд явлений, называемых эффектами пространственной поляризации.

Один из самых наглядных примеров дисперсии - разложение белого света при прохождении его через призму (опыт Ньютона) . Сущностью явления дисперсии является различие скоростей распространения лучей света c различной длиной волны в прозрачном веществе - оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета) . Обычно чем больше частота световой волны, тем больше показатель преломления среды для неё и тем меньше скорость волны в среде:

Опыты Ньютона Опыт по разложению белого света в спектр: Ньютон направил луч солнечного света через маленькое отверстие на стеклянную призму. Попадая на призму, луч преломлялся и давал на противоположной стене удлиненное изображение с радужным чередованием цветов – спектр. Опыт по прохождению монохроматического света через призму : Ньютон на пути солнечного луча поставил красное стекло, за которым получил монохроматический свет (красный), далее призму и наблюдал на экране только красное пятно от луча света. Опыт по синтезу (получению) белого света: Сначала Ньютон направил солнечный луч на призму. Затем, собрав вышедшие из призмы цветные лучи с помощью собирающей линзы, Ньютон на белой стене получил вместо окрашенной полосы белое изображение отверстия. Выводы Ньютона: - призма не меняет свет, а только разлагает его на составляющие - световые лучи, отличающиеся по цвету, отличаются по степени преломляемости; наиболее сильно преломляются фиолетовые лучи, менее сильно – красные - красный свет, который меньше преломляется, имеет наибольшую скорость, а фиолетовый - наименьшую, поэтому призма и разлагает свет. Зависимость показателя преломления света от его цвета называется дисперсией.

Выводы: - призма разлагает свет - белый свет является сложным (составным) - фиолетовые лучи преломляются сильнее красных. Цвет луча света определяется его частотой колебаний. При переходе из одной среды в другую изменяются скорость света и длина волны, а частота, определяющая цвет остается постоянной. Границы диапазонов белого света и его составляющих принято характеризовать их длинами волн в вакууме. Белый свет – это совокупность волн длинами от 380 до 760 нм.

Билет 77.

Поглощение света. Закон Бугера

Поглощение света в веществе связано с преобразованием энергии электромагнитного поля волны в тепловую энергию вещества (или в энергию вторичного фотолюминесцентного излучения). Закон поглощения света (закон Бугера) имеет вид:

I=I 0 exp(- x), (1)

где I 0 , I -интенсивности света на входе (х=0) и выходе из слоя среды толщины х, - коэффициент поглощения, он зависит от .

Для диэлектриков =10 -1 10 -5 м -1 , для металлов =10 5 10 7 м -1 , поэтому металлы непрозрачны для света.

Зависимостью () объясняется окрашенность поглощающих тел. Например, стекло, слабо поглощающее красный свет, при освещении белым светом будет казаться красным.

Рассеяние света. Закон Релея

Дифракция света может происходить в оптически неоднородной среде, например в мутной среде(дым, туман, запыленный воздух и т.п.). Дифрагируя на неоднородностях среды, световые волны создают дифракционную картину, характеризующуюся довольно равномерным распределением интенсивности по всем направлениям.

Такую дифракцию на мелких неоднородностях называют рассеянием света.

Это явление наблюдается, если узкий пучок солнечных лучей проходит через запыленный воздух, рассеивается на пылинках и становится видимым.

Если размеры неоднородностей малы по сравнению с длиной волны (не более чем 0,1 ), то интенсивность рассеянного света оказывается обратно пропорциональна четвертой степени длины волны, т.е.

I расс ~ 1/ 4 , (2)

эта зависимость носит название закона Релея.

Рассеяние света наблюдается также и в чистых средах, не содержащих посторонних частиц. Например, оно может происходить на флуктуациях (случайных отклонениях) плотности, анизотропии или концентрации. Такое рассеяние называют молекулярным. Оно объясняет, например, голубой цвет неба. Действительно, согласно (2) голубые и синие лучи рассеиваются сильнее, чем красные и желтые, т.к. имеют меньшую длину волны, обуславливая тем самым голубой цвет неба.

Билет 78.

Поляризация света - совокупность явлений волновой оптики, в которых проявляется поперечность электромагнитных световых волн. Поперечная волна - частицы среды колеблются в направлениях, перпендикулярных направлению распространения волны (рис.1 ).

Рис.1 Поперечная волна

Электромагнитная световая волна плоскополяризованная (линейная поляризация), если направления колебаний векторов E и B строго фиксированы и лежат в определенных плоскостях (рис.1 ). Плоскополяризованная световая волна называется плоскополяризованным (линейнополяризованным) светом. Неполяризованная (естественная) волна - электромагнитная световая волна, в которой направления колебаний векторов E и B в этой волне могут лежать в любых плоскостях, перпендикулярных вектору скорости v . Неполяризованный свет - световые волны, у которых направления колебаний векторов E и B хаотически меняются так, что равновероятны все направления колебаний в плоскостях, перпендикулярных к лучу распространения волны (рис.2 ).

Рис.2 Неполяризованный свет

Поляризованные волны - у которых направления векторов E и B сохраняются неизменными в пространстве или изменяются по определенному закону. Излучение, у которого направление вектора Е изменяется хаотически - неполяризованное . Примером такого излучения может являться тепловое излучение (хаотически распределенные атомы и электроны). Плоскость поляризации - это плоскость, перпендикулярная направлению колебаний вектора Е. Основной механизм возникновения поляризованного излучения - рассеяние излучения на электронах, атомах, молекулах, пылинках.

1.2. Виды поляризации Существует три вида поляризации. Дадим им определения. 1. Линейная Возникает, если электрический вектор Е сохраняет свое положение в пространстве. Она как бы выделяет плоскость, в которой колеблется вектор Е. 2. Круговая Это поляризация, возникающая, когда электрический вектор Е вращается вокруг направления распространения волны с угловой скоростью, равной угловой частоте волны, и сохраняет при этом свою абсолютную величину. Такая поляризация характеризует направление вращения вектора Е в плоскости, перпендикулярной лучу зрения. Примером является циклотронное излучение (система электронов, вращающихся в магнитном поле) . 3. Эллиптическая Возникает тогда, когда величина электрического вектора Е меняется так, что он описывает эллипс (вращение вектора Е). Эллиптическая и круговая поляризация бывает правой (вращение вектора Е происходит по часовой стрелке, если смотреть навстречу распространяющейся волне) и левой (вращение вектора Е происходит против часовой стрелки, если смотреть навстречу распространяющейся волне) .

Реально, чаще всего встречается частичная поляризация (частично поляризованные электромагнитные волны) . Количественно она характеризуется некой величиной, называемой степенью поляризации Р , которая определяется как: P = (Imax - Imin) / (Imax + Imin) где Imax , Imin - наибольшая и наименьшая плотность потока электромагнитной энергии через анализатор (поляроид, призму Николя…). На практике, поляризацию излучения часто описывают параметрами Стокса (определяют потоки излучения с заданным направлением поляризации).

Билет 79 .

Если естественный свет падает на границу раздела двух диэлектриков (например, воздуха и стекла), то часть его отражается, а часть преломляется в распространяется во второй среде. Устанавливая на пути отраженного и преломленного лучей анализатор (например, турмалин), убеждаемся в том, что отраженный и преломленный лучи частично поляризованы: при поворачивании анализатора вокруг лучей интенсивность света периодически усаливается и ослабевает (полного гашения не наблюдается!). Дальнейшие исследования показали, что в отраженном луче преобладают колебания, перпендикулярные плоскости падения (на рис. 275 они обозначены точками), в преломленном - колебания, параллельные плоскости падения (изображены стрелками).

Степень поляризации (степень выделения световых волн с определенной ориентацией электрического (и магнитного) вектора) зависит от угла падения лучей и показателя преломления. Шотландский физик Д. Брюстер (1781-1868) установил закон , согласно которому при угле падения i B (угол Брюстера), определяемого соотношением

(n 21 - показатель преломления второй среды относительно первой), отраженный луч является плоскополяризованным (содержит только колебания, перпендикулярные плос­кости падения) (рис. 276). Преломленный же луч при угле падения i B поляризуется максимально, но не полностью.

Если свет падает на границу раздела под углом Брюстера, то отраженный и прело­мленный лучи взаимно перпендикулярны (tgi B = sini B /cosi B , n 21 = sini B / sini 2 (i 2 - угол преломления), откуда cosi B =sini 2). Следовательно, i B + i 2 = /2, но i B = i B (закон от­ражения), поэтому i B + i 2 = /2.

Степень поляризации отраженного и преломленного света при различных углах падения можно рассчитать из уравнений Максвелла, если учесть граничные условия для электромагнитного поля на границе раздела двух изотропных диэлектриков (так называемые формулы Френеля).

Степень поляризации преломленного света может быть значительно повышена (многократным преломлением при условии падения света каждый раз на границу раздела под углом Брюстера). Если, например, для стекла (п= 1,53) степень поляриза­ции преломленного луча составляет 15%, то после преломления на 8-10 наложенных друг на друга стеклянных пластинок вышедший из такой системы свет будет практически полностью поляризованным. Такая совокупность пластинок называется стопой. Стопа может служить для анализа поляризованного света как при его отражении, так и при его преломлении.

Билет 79 (для шпоры)

Как показывает опыт при преломлении и отражении света преломленный и отраженный свет оказывается поляризованными,причем отраж. свет может быть полностью поляризоанным при некотором угле падения,а прилом. свет всегда является частично поляризованным.На основании формул Фринеля можно показать,что отраж. свет поляризован в плоскости перпендикулярный плоскости падения,а прелом. свет поляризован в плоскости параллельной плоскости падения.

Угол падения при котором отраж. свет является полностью поляризованным назвается углом Брюстера.Угол Брюстера определяется из закона Брюстера: -закон Брюстера.В этом случае угол между отраж. и прелом. лучами будет равен.Для системы воздух-стекло угол Брюстера равен.Для получения хорошей поляризации,т.е. ,при преломлении света используют много поелом-х поверхностей,которые носят название Стопа Столетова.

Билет 80 .

Опыт показывает, что при взаимодействии света с веществом основное действие (физиологическое, фотохимическое, фотоэлектрическое и др.) вызывается колебаниями вектора , который в связи с этим иногда называют световым вектором. Поэтому для описания закономерностей поляризации света следят за поведением вектора .

Плоскость, образованная векторами и , называется плоскостью поляризации.

Если колебания вектора происходят в одной фиксированной плоскости, то такой свет (луч) называется линейно-поляризованным . Его условно обозначают так. Если луч поляризован в перпендикулярной плоскости (в плоскости хоz , см. рис. 2 во второй лекции), то его обозначают.

Естественный свет (от обычных источников, солнца), состоит из волн, имеющих различные, хаотически распределенные плоскости поляризации (см. рис. 3).

Естественный свет иногда условно обозначают так. Его называют также неполяризованным.

Если при распространении волны вектор поворачивается и при этом конец вектора описывает окружность, то такой свет называется поляризованным по кругу, а поляризацию – круговой или циркулярной (правой или левой). Существует также эллиптическая поляризация.

Существуют оптические устройства (пленки, пластины и т.д.) – поляризаторы , которые из естественного света выделяют линейно поляризованный свет или частично поляризованный свет.

Поляризаторы, использующиеся для анализа поляризации света называются анализаторами .

Плоскостью поляризатора (или анализатора) называется плоскость поляризации света, пропускаемого поляризатором (или анализатором).

Пусть на поляризатор (или анализатор) падает линейно поляризованный свет с амплитудой Е 0 . Амплитуда прошедшего света будет равна Е=Е 0 сosj , а интенсивность I=I 0 сos 2 j.

Эта формула выражает закон Малюса :

Интенсивность линейно поляризованного света, прошедшего анализатор, пропорциональна квадрату косинуса угла j между плоскостью колебаний падающего света и плоскостью анализатора.

Билет 80(для шпоры)

Поляризаторы-приборы дающие возможность получить поляризованный свет.Анализаторы-это приборы с помощью которых можно проанализировать является ли свет поляризованным или нет.Конструктивно поляризатор и анализатор это одно и тоже.З-н Малюса.Пусть на поляризатор падает свет интенсивности,если свет является естеств-ым то у него все направления вектора E равны вероятны.Каждый вектор можно разложить на две взаимно перпендикулярные составляющие:одна из которых параллельна плоскости поляризации поляризатора,а другая ей перпендикулярна.

Очевидно интенсивность света вышедшего из поляризатора будет равна.Обозначим интенсивность света вышедшего из поляризатора через ().Если на пути поляриз-го свеа поставить анализатор главная плоскость которого составляет угол с главной плоскостью поляризатора,тогда интенсивность вышедшего из анализатора определяется законом.

Билет 81.

Изучая свечение раствора солей урана под действием -лучей радия, советский физик П. А. Черенков обратил внимание на то, что светится и сама вода, в которой солей урана нет. Оказалось, что при пропускании -лучей (см. Гамма-излучение) через чистые жидкости все они начинают светиться. С. И. Вавилов, под руководством которого работал П. А. Черенков, высказал гипотезу, что свечение связано с движением электронов, выбиваемых -квантами радия из атомов. Действительно, свечение сильно зависело от направления магнитного поля в жидкости (это наводило на мысль, что его причина - движение электронов).

Но почему движущиеся в жидкости электроны испускают свет? Правильный ответ на этот вопрос в 1937 г. дали советские физики И. Е. Тамм и И. М. Франк.

Электрон, двигаясь в веществе, взаимодействует с окружающими его атомами. Под действием его электрического поля атомные электроны и ядра смещаются в противоположные стороны - среда поляризуется. Поляризуясь и возвращаясь затем в исходное состояние, атомы среды, расположенные вдоль траектории электрона, испускают электромагнитные световые волны. Если скорость электрона v меньше скорости распространения света в среде ( - показатель преломления), то электромагнитное поле будет обгонять электрон, а вещество успеет поляризоваться в пространстве впереди электрона. Поляризация среды перед электроном и за ним противоположна по направлению, и излучения противоположно поляризованных атомов, «складываясь», «гасят» друг друга. Когда , атомы, до которых еще не долетел электрон, не успевают поляризоваться, и возникает излучение, направленное вдоль узкого конического слоя с вершиной, совпадающей с движущимся электроном, и углом при вершине с . Возникновение светового «конуса» и условие излучения можно получить из общих принципов распространения волн.

Рис. 1. Механизм образования волнового фронта

Пусть электрон движется по оси ОЕ (см. рис. 1) очень узкого пустого канала в однородном прозрачном веществе с показателем преломления (пустой канал нужен, чтобы в теоретическом рассмотрении не учитывать столкновений электрона с атомами). Любая точка на линии ОЕ, последовательно занимаемая электроном, будет центром испускания света. Волны, исходящие из последовательных точек О, D, Е, интерферируют друг с другом и усиливаются, если разность фаз между ними равна нулю (см. Интерференция). Это условие выполняется для направления, составляющего угол 0 с траекторией движения электрона. Угол 0 определяется соотношением: .

Действительно, рассмотрим две волны, испущенные в направлении под углом 0 к скорости электрона из двух точек траектории - точки О и точки D, разделенных расстоянием . В точку В, лежащую на прямой BE, перпендикулярной ОВ, первая волна при - через время В точку F, лежащую на прямой BE, волна, испущенная из точки , придет в момент времени после испускания волны из точки О. Эти две волны будут в фазе, т. е. прямая будет волновым фронтом, если эти времена равны: . Та как условие равенства времен дает . Во всех направлениях, для которых , свет будет гаситься из-за интерференции волн, испущенных из участков траектории, разделенных расстоянием Д. Величина Д определяется очевидным уравнением , где Т - период световых колебаний. Это уравнение всегда имеет решение, если .

Если , то направления, в котором излученные волны, интерферируя, усиливаются, не существует, не может быть больше 1.

Рис. 2. Распределение звуковых волн и формирование ударной волны при движении тела

Излучение наблюдается только, если .

На опыте электроны летят в конечном телесном угле, с некоторым разбросом по скоростям, и в результате излучение распространяется в коническом слое около основного направления, определяемого углом .

В нашем рассмотрении мы пренебрегли замедлением электрона. Это вполне допустимо, так как потери на излучение Вавилова - Черенкова малы и в первом приближении можно считать, что теряемая электроном энергия не сказывается на его скорости и он движется равномерно. В этом принципиальное отличие и необычность излучения Вавилова - Черенкова. Обычно заряды излучают, испытывая значительные ускорения.

Электрон, обгоняющий свой свет, сходен с самолетом, летящим со скоростью, большей скорости звука. В этом случае перед самолетом тоже распространяется коническая ударная звуковая волна, (см. рис. 2).

Потери энергии на излучение у быстрых заряженных частиц почти в тысячу раз меньше потерь на ионизацию. Казалось бы, что столь незначительную энергию трудно использовать в практических приложениях. Однако по излучению Вавилова - Черенкова с помощью специальных детекторов удается измерить скорость, энергию, заряд быстрых частиц.

В 1958 г. за открытие и толкование этого эффекта советским физикам П. А. Черенкову, И. М. Франку и И. Е. Тамму была присуждена Нобелевская премия по физике.

Билет 82.

Рассмотрим атом водорода.

Согласно теории Бора, при движении электрона по ближайшей к ядру стационарной орбите атом находится в основном состоянии, являющемся наиболее устойчивым. В основном состоянии атом может находиться неограниченно долгое время, поскольку это состояние соответствует наименьшему возможному значению энергии атома.

Когда электрон движется по какой-либо другой из разрешенных орбит, состояние атома называется возбужденным и является менее устойчивым, чем основное состояние. Через небольшой промежуток времени (порядка 10 -8 с) атом самопроизвольно переходит из возбужденного состояния в основное, излучая при этом квант энергии (рис. 20.4):

kn =W k W n .

Так как в возбужденном состоянии энергия атома больше, чем в основном, то произвольно атом в возбужденное состояние перейти не может. Способы возбуждения атомов вещества могут быть самыми различными: удар об атом какой-то частицы, химические реакции, воздействие света и т.д. Но они оказываются эффективными для возбуждения только тогда, когда поставляют энергию квантами, которые в состоянии возбудить данные атомы. Если эта энергия недостаточна для переброски атома с низшего энергетического уровня на более высокий, то атом такую энергию примет и при этом возрастет, например, энергия его теплового хаотического движения, но в возбужденное состояние атом не перейдет.

Энергия фотона, поглощаемого атомом при переходе из одного состояния в другое, в точности равна разности энергий атома в этих двух состояниях (рис. 20.7):

21=W 2−W 1,31=W 3−W 1,…

Иными словами, он поглощает свет только такой частоты, которую сам может испускать (закон поглощения и испускания света, полученный экспериментально Г. Кирхгофом). Исключение составляет случай, когда внешнее воздействие может сообщать атому энергию больше той, которая необходима для его ионизации. При этом часть энергии внешнего воздействия тратится на ионизацию атома, а избыток энергии передается вырванному электрону в виде его кинетической энергии. Последняя может иметь произвольную величину.

Итак, можно сделать следующие выводы.

1. Свободный атом поглощает и излучает энергию только целыми квантами.

2. При переходе в возбужденное состояние атом поглощает только такие кванты, которые может сам испускать.

Абсол ю тно чёрное т е ло, тело, которое при любой температуре полностью поглощает весь падающий на него поток излучения, независимо от длины волны. Коэффициент поглощения А. ч. т. (отношение поглощаемой энергии к энергии падающего потока) равен 1. В природе А. ч. т. нет. Близким к 1 коэффициентом поглощения обладают сажа и платиновая чернь. Наилучшим приближением к А. ч. т. является почти замкнутый сосуд с малым отверстием и непрозрачными стенками, имеющими одинаковую температуру во всех точках. Луч, попавший в полость через отверстие, многократно отражается (см. рис. ) и при каждом отражении частично поглощается стенками полости. В результате через некоторое время он поглотится почти полностью. Например, лучи света, попавшие через окно в комнату, поглощаются в ней и на улицу выходит лишь небольшая часть светового потока, поэтому раскрытое окно, рассматриваемое издали с улицы, кажется чёрным.

А. ч. т., как и все нагретые тела, испускает электромагнитное излучение. Основной особенностью А. ч. т. является то, что его спектр излучения определяется только температурой и не зависит от свойств вещества, из которого оно состоит. Яркость А. ч. т. чрезвычайно быстро возрастает с температурой. Зависимость яркости и цвета А. ч. т. от температуры определяется Стефана - Больцмана законом излучения, Вина законом излучения и Планка законом излучения. Эти законы позволяют определять температуру А. ч. т. по характеру их излучения; такие измерения производятся пирометрами. Яркость А. ч. т. для данной температуры - величина постоянная, большая, чем яркость любого другого тела (серого тела) при той же температуре, поэтому А. ч. т. применяют в качестве светового эталона (при температуре затвердевания платины).

Абсолютно белое тело – тело, которое отражает все падающие на него лучи. Абсолютно белое тело- по сути и является излучением в чистом виде.

Если насытить вещество без энергии энергией, то получим полноценных химический элемент с электронами на орбитах, а не пустое ядро.

Плотность